هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه یک الگوریتم موازی و ساده برای مساله‌ی کوتاه ترین مسیر تک منبع بر روی گراف مسطح. doc

اختصاصی از هایدی پروژه یک الگوریتم موازی و ساده برای مساله‌ی کوتاه ترین مسیر تک منبع بر روی گراف مسطح. doc دانلود با لینک مستقیم و پر سرعت .

پروژه یک الگوریتم موازی و ساده برای مساله‌ی کوتاه ترین مسیر تک منبع بر روی گراف مسطح. doc


پروژه یک الگوریتم موازی و ساده برای مساله‌ی کوتاه ترین مسیر تک منبع بر روی گراف مسطح. doc

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 30 صفحه

 

چکیده:

در این مقاله یک الگوریتم ساده برای مسئله‌ی کوتاهترین مسیر تک-منبع در یک گراف مسطح با یالهای با وزن غیر‌منفی ارائه خواهیم داد. الگوریتم مزبور در زمان و با انجام ، ، عمل بر روی مدل EREW PRAM اجرا می‌شود. نقطه قوت الگوریتم در سادگی آن است که آنرا برای پیاده‌سازی و استفاده ، در عمل بسیار کارامد می‌سازد. در این مقاله ساختار داده‌هایی برای پیاده‌سازی این الگوریتم بر روی EREW PRAM ارایه شده است. می‌توان این الگوریتم را با انجام تغییراتی بر روی مدل برنامه‌نویسی MPI به سادگی پیاده کرد. الگوریتم ما بر اساس ناحیه‌بندی گراف ورودی و استفاده از روش موازی الگوریتم دایسترا ، بنا شده است.

مقدمه:

مساله‌ی کوتاهترین مسیر یک مساله‌ی زیربنایی و مهم در بهینه‌سازی ترکیبیاتی است که از ارزش عملی و تئوری زیادی برخوردار است. برای یک گراف جهت‌دار که شامل n راس و m یال است، مساله‌ی کوتاهترین مسیر عبارت است از پیدا کردن یک مسیر با کمترین وزن بین هر دو راس u و v که در مجموعه‌ی راسها وجود دارند. وزن مسیر u-v برابر مجموع وزن یالهای بین آنهاست. وزن کوتاهترین مسیر بین u-v ، فاصله از u تا v نامیده می‌شود. مساله‌ی کوتاهترین مسیر، بر حسب جفت راسهای u و v و نحوه‌ی وزن‌گذاری یالهای گراف به گونه‌های مختلفی تقسیم می‌شود.

اگرچه الگوریتم‌های سریال کارا برای بیشتر این گونه مسایل وجود دارند اما هنوز فقدان یک الگوریتم موازی کارا برای آن احساس می‌شود؛ الگورتیم کارا ، یعنی الگوریتمی که میزان کار انجام شده توسط آن برای حل مساله معادل یا نزدیک به تعداد کاری باشد که توسط بهترین الگوریتم سریال لازم است (منظور از کار، مجموع تمام کارهایی است که توسط پروسسورها انجام می‌شود). طراحی یک الگوریتم کارا برای مساله‌ی کوتاهترین مسیر ، یک مساله‌ی حل نشده‌ی مهم را در پردازش موازی تشکیل می‌دهد. یکی از دلایل ممکن برای نبود چنان الگوریتمی می‌تواند این باشد که بیشتر تاکیدها بر روی به دست آودردن یک الگوریتم خیلی سریع (یعنی NC) قرار گرفته است. به هر حال در اغلب موقعیتهای عملی، که تعداد پروسسورهای موجود ثابت و خیلی کوچکتر از اندازه‌ی مساله‌ای است که در دست داریم ، هدف اصلی و ابتدایی ما اینست که یک الگوریتم work-efficient (به‌جای الگوریتم خیلی سریع) داشته باشیم؛ چرا که در چنان مواردی زمان اجرا بر کاری که بین پروسسورها تقسیم می‌شود غالب است. اگر چنان الگوریتمی سایر پارامترهای خاص مانند سادگی و پیاده‌سازی راحت را داشته باشد از اهمیت ویژه‌ای برخوردار خواهد بود.

یکی از گونه‌های مهم مساله‌ی کوتاهترین مسیر ، مساله‌ی کوتاهترین مسیر تک-منبع یا درخت کوتاهترین مسیر است: با داشتن یک گراف جهت‌دار که شامل n راس و m یال و یک راس مشخص که منبع نامیده می‌شود، است، مساله‌ی ما عبارت است از پیدا کردن کوتاهترین مسیر از s به تمام راسهای دیگر در G. مساله‌ی کوتاهترین مسیر تک-منبع یک راه حل سریال کارا دارد مخصوصا وقتی که G هیچ راس منفی نداشته باشد. در این مورد مساله می‌تواند توسط الگوریتم دایسترا در زمان با استفاده از هیپ فیبوناچی یا یک ساختار داده‌ی صف اولویت با زمان حدی مشابه، حل شود[2].

در این مقاله ما برای مساله‌ی کوتاهترین مسیر تک-منبع بر روی یک گراف مسطح G با وزن یال حقیقی و غیرمنفی ، یک الگوریتم ساده ارایه می‌دهیم که پیاده‌سازی آن راحت است. با مصالحه‌ای بر زمان اجرا ، الگوریتمی (قطعی) ارایه می‌دهیم که از لحاظ work-efficiency بهبودی بر الگوریتمهای قبل از آن باشد. این الگوریتم که با جزییات کامل و اثبات در [1] ارایه شده است. در اینجا ما آن الگوریتم را با توضیحات بیشتر توضیح می‌دهیم. به‌طور دقیقتر الگوریتم مزبور بر روی EREW PRAM در زمان و با انجام عمل ، اجرا می‌شود که .

مانند الگوریتمهای کوتاهترین مسیر تک-منبع قبلی ، الگوریتم حاضر بر اساس ناحیه‌بندی گراف و تبدیل مساله به یک دسته از مسایل کوتاهترین مسیر بر روی ناحیه‌ها، عمل می‌کند. عملکرد الگوریتم ما به این صورت است که با داشتن یک ناحیه‌بندی از گراف، ما برای هر ناحیه الگوریتم دایسترا را بکار می‌بریم و در پایان ، الگوریتم دایسترا را بر روی گراف کمکی که با استفاده از اطلاعات کوتاهترین مسیر در نواحی ساخته شده ، اجرا می‌کنیم. جزییات این الگوریتم در بخشهای بعدی آمده است. با تولید کپی‌های مناسب و کافی از یالهای گراف ، از خواندن و نوشتن همزمان پروسسورها در حافظه جلوگیری می‌شود. همانطور که گفتیم ما در الگوریتم خود نیازمند یک ناحیه‌بندی از گراف ورودی هستیم که برای محاسبه‌ی این ناحیه‌بندی ، ما یک پیاده‌سازی EREW PRAM از الگوریتم ارائه شده در [3] را ارایه می‌دهیم. این پیاده‌سازی خاص، یک ناحیه‌بندی از گراف مطابق با نیاز الگوریتم ما را محاسبه می‌کند. در این الگوریتم هم فرض می‌شود که گراف ورودی مسطح است.

مهمترین امتیاز الگوریتم ما سادگی آن است که پیاده‌سازی آنرا راحت می‌کند، طوری که پیاده‌سازی آن بر اساس روتینهای زیربنایی و قابل فهم ، همانطور که در ادامه گفته خواهد شد، استوار است که می‌توان آنها را در همه‌ی کتابخانه‌های الگوریتمهای موازی یافت. می‌توان این الگوریتم را با انجام تغییراتی بر روی مدل برنامه نویسی MPI به راحتی پیاده کرد. ذکر این نکته حایز اهمیت است که برای ماشینی که اجازه‌ی خواندن و نوشتن همزمان را می‌دهد، الگوریتم ما می‌تواند به‌طرز قابل توجهی ساده‌تر شود؛ بخاطر اینکه دیگر ایجاد کپی‌های فراوان از گراف ورودی برای خواندن همروند لازم نیست.

ما در بخش بعدی ، تعاریف را ارایه می‌دهیم و برخی از نکات ابتدایی در مورد جداساز‌ها (separator) و ناحیه‌بندی گراف مسطح را بیان می‌کنیم. الگوریتم ما در بخش 3 ارایه شده است. در بخش 4 هم جزییات مربوط به پیاده‌سازی بدست آوردن یک ناحیه‌بندی از گراف را توضیح می‌دهیم. در بخش 5 در مورد پیاده‌سازی الگوریتم بر روی MPI صحبت می‌کنیم. نتیجه‌گیری و جمع‌بندی هم در بخش 6 ارایه شده است

 

فهرست مطالب:

چکیده

1 مقدمه

2 مقدمات اولیه

قضیه 1 (قضیه‌ی جداساز مسطح)

روالهای مورد نیاز الگوریتم

الگوریتم دایسترای موازی

3 الگوریتم کوتاهترین مسیر

ورودی

4 بدست آوردن ناحیه‌بندی گراف بصورت موازی

4-1 الگوریتم سریال Lipton-Tarjan برای یافتن جداساز در گراف

4-2 الگوریتم موازی Gazit-Miller برای یافتن جداساز در گراف

الگوریتم: Gazit-Miller

ورودی

خروجی

4-3 الگوریتم موازی برای ناحیه‌بندی گراف

5 پیاده‌سازی بر روی MPI

6 جمع‌بندی و نتیجه‌گیری

منابع و مآخذ

 

فهرست اشکال:

شکل 1. یک جداساز برای گراف که نودهای آن با رنگ

خاکستری نشان داده شده‌اند.

شکل 2. ناحیه‌بندی گراف به 3 ناحیه‌ی مجزا

شکل 3. ساختار داده‌های لازم برای ارایه‌ی تقسیم-r

شکل 4. ساختن

 

منابع ومأخذ:

L. Träff, C. D. Zaroliagis, A Simple Parallel Algorithm for the Single-Source Shortest Path Problem on Planar Digraphs , Journal of Parallel and

Distributed Computing 60, 1103-1124 (2000).

H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introuduction to Algorithms (second edition), chapter 24, McGraw-Hill Book Company.

N. Fredrickson, Fast algorithms for shortest path in planar graphs with applications, SIAM J. Comput. 16, 6 (1987), 1004-1022.

j. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. 36, 2 (1979), 177-189.

Gazit and G. L. Miller, An optimal parallel algorithm for a separator for planar graphs, Unpublished manuscript, 1987.


دانلود با لینک مستقیم


پروژه یک الگوریتم موازی و ساده برای مساله‌ی کوتاه ترین مسیر تک منبع بر روی گراف مسطح. doc

بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

اختصاصی از هایدی بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 28

 

بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک

خلاصه

این مقاله، توسط ترکیب کردن فلوچارت ( نمودار گردش کار) براساس ابراز شبیه سازی با یک روش بهینه سازی ژنتیک قدرتمند، یک روش را برای بهینه سازی منبع نشان می دهد.روش ارائه شده، کمترین هزینه،و بیشترین بازده را ارائه میدهد، وبالاترین نسبت سودمندی را در عملکردهای ساخت و تولید فراهم می آورد. به منظور یکپارچگی بیشتر بهینه سازی منبع در طرح ریزی های ساخت،مدلهای شبیه سازی بهینه یافته (GA) الگوریتم های ژنتیکی گوناگون،عموماً با نرم افزارهای مدیریت پروژه بکار رفته شده ادغام می شوند. بنابراین، این مدلها از طریق نرم افزار زمان بندی فعال می شوند و طرح را بهینه می سازند.نتیجه، یک ساختار کاری تقلیل یافته سلسله مراتبی در رابطه با مدلهای همانندی سازی بهینه یافته GA است. آزمایشات گوناگون بهینه سازی با یک سیستم در دو مورد مطالعه، توانایی آن را برای بهینه ساختن منابع در محدوده محدودیتهای واقعی مدلهای همانند سازی آشکار کرد. این الگو برای کاربرد بسیارآسان است و می تواند در پروژه های بزرگ بکار رود. براساس این تحقیق، همانندسازی کامپیوتر وا لگوریتمهای ژنتیک ،می توانند یک ترکیب موثر برای بهبود دادن بازده و صرفه جویی در زمان وساخت و هزینه ها باشند.

مقدمه

این امر کاملاً آشکار شده است که بازده کاری پایین ،عدم آموزش، و کاهش تعداد معاملات، چالشهای بحرانی هستند که صنعت ساختمان( ساخت) با آن روبرو خواهد شد.

بهره دهی یا قدرت تولید در رابطه با مطالعه ها، برای مثال،دلالت بر زمان بیکاری (بیهودة) کاربران در ساخت(تولید) دارد که این زمان از 20 تا 45% متغیر است. این اتلاف وقت ، که از طریق منابع ناکارآمد و طرح ریزیهای غیربسنده( نامناسب) ناشی می شود، تاثیر و پیامد فوق العاده ای در هزینه های ساخت دارد. همچنین، پیماناکاران که مهارتهای مدیریتی منابع کارآمد را ندارند، این رقابت کردن در بازارهای ساخت جهانی که آنها د ر آن فرصتها بسیاری را خواهند یافت، برای آنها کاری بس دشوار خواهد بود.

با ایجاد تجهیزات و نیروی کار برای امر ساخت و تولید، این امر آشکار است که تدبیرهای کاربرد نیروی کار متناوب و کاربرد بهتر از منابع کاری موجود، به منظور بهبود دادن،بهره دهی کاری و کاهش هزینه های ساخت، مورد نیاز است. استفاده کارآمد از منابع پروژه، هزینه های ساخت را برای مالکان و مصرف کنندگان کاهش می دهد، و در عین حال سودمندیهایی را برای پیمانکاران افزایش می دهد. با این وجود،برخی فاکتورها وجود دارند که ،مدیریت منبع را امر دشواری می سازند، این فاکتورها در مراحل زیر توضیح داده شده اند:

سیاست جداسازی مدیریت منبع:در ادبیات، محققان گوناگون، تعدادی تکنیکها را برای پرداختن به جنبه های فردی مدیریت منبع، همانند تخصیص منبع، سطح بندی منبع، مدیریت نقدینگی، و تجزیه و هزینه و زمان معاملات (TCT) ، ارائه داده اند. مطالعات تالبوت و پترسون(1979) و گاولیش و پیرکون (1991)، برای مثال، به تخصیص منابع مربوط بود ، در حالیکه بررسیهای Easa (1989) و Shah et al (1993) به سطح بندی و تراز کردن منابع می پرداخت روشهای دیگر ، تنها روی تجزیه TCT متمرکز شدند. همانطوریکه این بررسیها سودمند واقع شدند، آنها به ویژگیهای مجزایی پرداختند که یکی پس از دیگری برای پروژه ها بکار برده می شدند ( نه بطور همزمان) . بوسیله پیچیدگی اساسی پروژه ها و مشکلاتی در رابطه با الگوبرداری تمام ویژگیهای ترکیب یافته، تلاش بسیار کمی برای بهینه سازی منابع ترکیب شده به عمل آمد.

ناکارآمدی الگوریتم های بهنیه سازی سنتی: در چند دهه گذشته ، بهینه سازی منبع سنتی، براساس روشهای ریاضی یا براساس تکنیکهای ذهنی(غیرمستدل) بوده است. روشهای ریاضی ، همانند برنامه ریزیهای عدد صحیح ، خطی، یا برنامه ریزیهای دینامیکی ،برای مشکلات منبع فردی پیشنهاد شده بودند.با این وجود ، روشهای ریاضی از لحاظ محاسبه ای برای هر پروژه واقعی انعطاف ناپذیر بودند که این روش فقط برای سایزهایی از پروژه مناسب می باشد. همچنین ،روشهای ریاضی پیچیده ایشان دستخوش تغییر می شوند وممکن در مطلوبترین وبهینه ترین قرار بگیرند، روشهای ذهنی (غیرمستدل) ، ازسوی دیگر، تجربیات وقوانین thumb را بکار می برند، نه فرمولهای ریاضی سخت ودقیق را. محققان برای تخصیص منبع، مدلهای ذهنی گوناگونی را پیشنهاد نموده اندن،تراز بندی منبع ها،تجزیه TCT، علی رغم سهولتشان


دانلود با لینک مستقیم


بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

اختصاصی از هایدی بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 28

 

بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک

خلاصه

این مقاله، توسط ترکیب کردن فلوچارت ( نمودار گردش کار) براساس ابراز شبیه سازی با یک روش بهینه سازی ژنتیک قدرتمند، یک روش را برای بهینه سازی منبع نشان می دهد.روش ارائه شده، کمترین هزینه،و بیشترین بازده را ارائه میدهد، وبالاترین نسبت سودمندی را در عملکردهای ساخت و تولید فراهم می آورد. به منظور یکپارچگی بیشتر بهینه سازی منبع در طرح ریزی های ساخت،مدلهای شبیه سازی بهینه یافته (GA) الگوریتم های ژنتیکی گوناگون،عموماً با نرم افزارهای مدیریت پروژه بکار رفته شده ادغام می شوند. بنابراین، این مدلها از طریق نرم افزار زمان بندی فعال می شوند و طرح را بهینه می سازند.نتیجه، یک ساختار کاری تقلیل یافته سلسله مراتبی در رابطه با مدلهای همانندی سازی بهینه یافته GA است. آزمایشات گوناگون بهینه سازی با یک سیستم در دو مورد مطالعه، توانایی آن را برای بهینه ساختن منابع در محدوده محدودیتهای واقعی مدلهای همانند سازی آشکار کرد. این الگو برای کاربرد بسیارآسان است و می تواند در پروژه های بزرگ بکار رود. براساس این تحقیق، همانندسازی کامپیوتر وا لگوریتمهای ژنتیک ،می توانند یک ترکیب موثر برای بهبود دادن بازده و صرفه جویی در زمان وساخت و هزینه ها باشند.

مقدمه

این امر کاملاً آشکار شده است که بازده کاری پایین ،عدم آموزش، و کاهش تعداد معاملات، چالشهای بحرانی هستند که صنعت ساختمان( ساخت) با آن روبرو خواهد شد.

بهره دهی یا قدرت تولید در رابطه با مطالعه ها، برای مثال،دلالت بر زمان بیکاری (بیهودة) کاربران در ساخت(تولید) دارد که این زمان از 20 تا 45% متغیر است. این اتلاف وقت ، که از طریق منابع ناکارآمد و طرح ریزیهای غیربسنده( نامناسب) ناشی می شود، تاثیر و پیامد فوق العاده ای در هزینه های ساخت دارد. همچنین، پیماناکاران که مهارتهای مدیریتی منابع کارآمد را ندارند، این رقابت کردن در بازارهای ساخت جهانی که آنها د ر آن فرصتها بسیاری را خواهند یافت، برای آنها کاری بس دشوار خواهد بود.

با ایجاد تجهیزات و نیروی کار برای امر ساخت و تولید، این امر آشکار است که تدبیرهای کاربرد نیروی کار متناوب و کاربرد بهتر از منابع کاری موجود، به منظور بهبود دادن،بهره دهی کاری و کاهش هزینه های ساخت، مورد نیاز است. استفاده کارآمد از منابع پروژه، هزینه های ساخت را برای مالکان و مصرف کنندگان کاهش می دهد، و در عین حال سودمندیهایی را برای پیمانکاران افزایش می دهد. با این وجود،برخی فاکتورها وجود دارند که ،مدیریت منبع را امر دشواری می سازند، این فاکتورها در مراحل زیر توضیح داده شده اند:

سیاست جداسازی مدیریت منبع:در ادبیات، محققان گوناگون، تعدادی تکنیکها را برای پرداختن به جنبه های فردی مدیریت منبع، همانند تخصیص منبع، سطح بندی منبع، مدیریت نقدینگی، و تجزیه و هزینه و زمان معاملات (TCT) ، ارائه داده اند. مطالعات تالبوت و پترسون(1979) و گاولیش و پیرکون (1991)، برای مثال، به تخصیص منابع مربوط بود ، در حالیکه بررسیهای Easa (1989) و Shah et al (1993) به سطح بندی و تراز کردن منابع می پرداخت روشهای دیگر ، تنها روی تجزیه TCT متمرکز شدند. همانطوریکه این بررسیها سودمند واقع شدند، آنها به ویژگیهای مجزایی پرداختند که یکی پس از دیگری برای پروژه ها بکار برده می شدند ( نه بطور همزمان) . بوسیله پیچیدگی اساسی پروژه ها و مشکلاتی در رابطه با الگوبرداری تمام ویژگیهای ترکیب یافته، تلاش بسیار کمی برای بهینه سازی منابع ترکیب شده به عمل آمد.

ناکارآمدی الگوریتم های بهنیه سازی سنتی: در چند دهه گذشته ، بهینه سازی منبع سنتی، براساس روشهای ریاضی یا براساس تکنیکهای ذهنی(غیرمستدل) بوده است. روشهای ریاضی ، همانند برنامه ریزیهای عدد صحیح ، خطی، یا برنامه ریزیهای دینامیکی ،برای مشکلات منبع فردی پیشنهاد شده بودند.با این وجود ، روشهای ریاضی از لحاظ محاسبه ای برای هر پروژه واقعی انعطاف ناپذیر بودند که این روش فقط برای سایزهایی از پروژه مناسب می باشد. همچنین ،روشهای ریاضی پیچیده ایشان دستخوش تغییر می شوند وممکن در مطلوبترین وبهینه ترین قرار بگیرند، روشهای ذهنی (غیرمستدل) ، ازسوی دیگر، تجربیات وقوانین thumb را بکار می برند، نه فرمولهای ریاضی سخت ودقیق را. محققان برای تخصیص منبع، مدلهای ذهنی گوناگونی را پیشنهاد نموده اندن،تراز بندی منبع ها،تجزیه TCT، علی رغم سهولتشان


دانلود با لینک مستقیم


بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

اختصاصی از هایدی بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 28

 

بهینه سازی منبع با استفاده از شبیه سازی ترکیب یافته و الگوریتم ژنتیک

خلاصه

این مقاله، توسط ترکیب کردن فلوچارت ( نمودار گردش کار) براساس ابراز شبیه سازی با یک روش بهینه سازی ژنتیک قدرتمند، یک روش را برای بهینه سازی منبع نشان می دهد.روش ارائه شده، کمترین هزینه،و بیشترین بازده را ارائه میدهد، وبالاترین نسبت سودمندی را در عملکردهای ساخت و تولید فراهم می آورد. به منظور یکپارچگی بیشتر بهینه سازی منبع در طرح ریزی های ساخت،مدلهای شبیه سازی بهینه یافته (GA) الگوریتم های ژنتیکی گوناگون،عموماً با نرم افزارهای مدیریت پروژه بکار رفته شده ادغام می شوند. بنابراین، این مدلها از طریق نرم افزار زمان بندی فعال می شوند و طرح را بهینه می سازند.نتیجه، یک ساختار کاری تقلیل یافته سلسله مراتبی در رابطه با مدلهای همانندی سازی بهینه یافته GA است. آزمایشات گوناگون بهینه سازی با یک سیستم در دو مورد مطالعه، توانایی آن را برای بهینه ساختن منابع در محدوده محدودیتهای واقعی مدلهای همانند سازی آشکار کرد. این الگو برای کاربرد بسیارآسان است و می تواند در پروژه های بزرگ بکار رود. براساس این تحقیق، همانندسازی کامپیوتر وا لگوریتمهای ژنتیک ،می توانند یک ترکیب موثر برای بهبود دادن بازده و صرفه جویی در زمان وساخت و هزینه ها باشند.

مقدمه

این امر کاملاً آشکار شده است که بازده کاری پایین ،عدم آموزش، و کاهش تعداد معاملات، چالشهای بحرانی هستند که صنعت ساختمان( ساخت) با آن روبرو خواهد شد.

بهره دهی یا قدرت تولید در رابطه با مطالعه ها، برای مثال،دلالت بر زمان بیکاری (بیهودة) کاربران در ساخت(تولید) دارد که این زمان از 20 تا 45% متغیر است. این اتلاف وقت ، که از طریق منابع ناکارآمد و طرح ریزیهای غیربسنده( نامناسب) ناشی می شود، تاثیر و پیامد فوق العاده ای در هزینه های ساخت دارد. همچنین، پیماناکاران که مهارتهای مدیریتی منابع کارآمد را ندارند، این رقابت کردن در بازارهای ساخت جهانی که آنها د ر آن فرصتها بسیاری را خواهند یافت، برای آنها کاری بس دشوار خواهد بود.

با ایجاد تجهیزات و نیروی کار برای امر ساخت و تولید، این امر آشکار است که تدبیرهای کاربرد نیروی کار متناوب و کاربرد بهتر از منابع کاری موجود، به منظور بهبود دادن،بهره دهی کاری و کاهش هزینه های ساخت، مورد نیاز است. استفاده کارآمد از منابع پروژه، هزینه های ساخت را برای مالکان و مصرف کنندگان کاهش می دهد، و در عین حال سودمندیهایی را برای پیمانکاران افزایش می دهد. با این وجود،برخی فاکتورها وجود دارند که ،مدیریت منبع را امر دشواری می سازند، این فاکتورها در مراحل زیر توضیح داده شده اند:

سیاست جداسازی مدیریت منبع:در ادبیات، محققان گوناگون، تعدادی تکنیکها را برای پرداختن به جنبه های فردی مدیریت منبع، همانند تخصیص منبع، سطح بندی منبع، مدیریت نقدینگی، و تجزیه و هزینه و زمان معاملات (TCT) ، ارائه داده اند. مطالعات تالبوت و پترسون(1979) و گاولیش و پیرکون (1991)، برای مثال، به تخصیص منابع مربوط بود ، در حالیکه بررسیهای Easa (1989) و Shah et al (1993) به سطح بندی و تراز کردن منابع می پرداخت روشهای دیگر ، تنها روی تجزیه TCT متمرکز شدند. همانطوریکه این بررسیها سودمند واقع شدند، آنها به ویژگیهای مجزایی پرداختند که یکی پس از دیگری برای پروژه ها بکار برده می شدند ( نه بطور همزمان) . بوسیله پیچیدگی اساسی پروژه ها و مشکلاتی در رابطه با الگوبرداری تمام ویژگیهای ترکیب یافته، تلاش بسیار کمی برای بهینه سازی منابع ترکیب شده به عمل آمد.

ناکارآمدی الگوریتم های بهنیه سازی سنتی: در چند دهه گذشته ، بهینه سازی منبع سنتی، براساس روشهای ریاضی یا براساس تکنیکهای ذهنی(غیرمستدل) بوده است. روشهای ریاضی ، همانند برنامه ریزیهای عدد صحیح ، خطی، یا برنامه ریزیهای دینامیکی ،برای مشکلات منبع فردی پیشنهاد شده بودند.با این وجود ، روشهای ریاضی از لحاظ محاسبه ای برای هر پروژه واقعی انعطاف ناپذیر بودند که این روش فقط برای سایزهایی از پروژه مناسب می باشد. همچنین ،روشهای ریاضی پیچیده ایشان دستخوش تغییر می شوند وممکن در مطلوبترین وبهینه ترین قرار بگیرند، روشهای ذهنی (غیرمستدل) ، ازسوی دیگر، تجربیات وقوانین thumb را بکار می برند، نه فرمولهای ریاضی سخت ودقیق را. محققان برای تخصیص منبع، مدلهای ذهنی گوناگونی را پیشنهاد نموده اندن،تراز بندی منبع ها،تجزیه TCT، علی رغم سهولتشان


دانلود با لینک مستقیم


بهینه سازی منبع با استفاده از شبیه‌سازی ترکیب یافته و الگوریتم ژنتیک

دانلود پروژه سورس کد برنامه الگوریتم خوشه بندی کامینز KMeans Clustring Algorithm یادگیری ماشین به زبان متلب

اختصاصی از هایدی دانلود پروژه سورس کد برنامه الگوریتم خوشه بندی کامینز KMeans Clustring Algorithm یادگیری ماشین به زبان متلب دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه سورس کد برنامه الگوریتم خوشه بندی کامینز KMeans Clustring Algorithm یادگیری ماشین به زبان متلب


دانلود پروژه سورس کد برنامه الگوریتم خوشه بندی کامینز  KMeans Clustering Algorithm یادگیری ماشین به زبان متلب


دانلود کد برنامه نویسی k-means clustring Matlab Implementation a method of vector quantization, originally from signal processing, that is popular for cluster analysis in data mining

موضوع پروژه: سورس کد پیاده سازی برنامه روش کامینز K-Means یکی از روش های خوشه بندی داده ها در داده کاوی و زبان برنامه نویسی متلب

زبان برنامه نویسی: متلب MATLAB

محیط برنامه نویسی: Mathworks MATLAB

توضیحات از ویکی پدیا :

k-means clustering is a method of vector quantization, originally from signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. This results in a partitioning of the data space into Voronoi cells.

The problem is computationally difficult (NP-hard); however, there are efficient heuristic algorithms that are commonly employed and converge quickly to a local optimum. These are usually similar to the expectation-maximization algorithm for mixtures of Gaussian distributions via an iterative refinement approach employed by both algorithms. Additionally, they both use cluster centers to model the data; however, k-means clustering tends to find clusters of comparable spatial extent, while the expectation-maximization mechanism allows clusters to have different shapes.

The algorithm has a loose relationship to the k-nearest neighbor classifier, a popular machine learning technique for classification that is often confused with k-means because of the k in the name. One can apply the 1-nearest neighbor classifier on the cluster centers obtained by k-means to classify new data into the existing clusters. This is known as nearest centroid classifier or Rocchio algorithm.

 روش کامینز K-Means یکی از روش های خوشه بندی داده ها در داده کاوی است. این روش علی‌رغم سادگی آن یک روش پایه برای بسیاری از روش‌های خوشه‌بندی دیگر (مانند خوشه‌بندی فازی) محسوب می‌شود. این روش روشی انحصاری و مسطح محسوب می‌شود. برای این الگوریتم شکلهای مختلفی بیان شده است. ولی همه آنها دارای روالی تکراری هستند که برای تعدادی ثابت از خوشه‌ها سعی در تخمین موارد زیر دارند:
بدست آوردن نقاطی به عنوان مراکز خوشه‌ها این نقاط در واقع همان میانگین نقاط متعلق به هر خوشه هستند. نسبت دادن هر نمونه داده به یک خوشه که آن داده کمترین فاصله تا مرکز آن خوشه را دارا باشد. در نوع ساده‌ای از این روش ابتدا به تعداد خوشه‌‌های مورد نیاز نقاطی به صورت تصادفی انتخاب می‌شود. سپس در داده‌ها با توجه با میزان نزدیکی (شباهت) به یکی از این خوشه‌ها نسبت داده‌ می‌شوند و بدین ترتیب خوشه‌های جدیدی حاصل می‌شود. با تکرار همین روال می‌توان در هر تکرار با میانگین‌گیری از داده‌ها مراکز جدیدی برای آنها محاسبه کرد و مجدادأ داده‌ها را به خوشه‌های جدید نسبت داد. این روند تا زمانی ادامه پیدا می‌کند که دیگر تغییری در داده‌ها حاصل نشود. تابع زیر به عنوان تابع هدف مطرح است.

در الگوریتم Kmeans ابتدا k عضو (که k تعداد خوشه‌ها است) بصورت تصادفی از میان n عضو به عنوان مراکز خوشه‌ها انتخاب می‌شود. سپس n-k عضو باقیمانده به نزدیک‌ترین خوشه تخصیص می‌یابند. بعد از تخصیص همه اعضا مراکز خوشه مجدداً محاسبه می‌شوند و با توجه به مراکز جدید به خوشه‌ها تخصیص می‌یابند و این کار تا زمانی که مراکز خوشه‌ها ثابت بماند ادامه می‌یابد.

نمونه تصاویر خروجی:

پیاده سازی الگوریتم KMeans

ویژگی های این برنامه:

1. نمایش خروجی های الگوریتم KMeans 

(Sepal & Petal)

2. نمایش زمان اجرا در محیط کنسول

3. توضیحات بلوکی کدها به زبان انگلیسی

4. نمایش نرخ خطای بدست آمده در محیط کنسول

راهنمای اجرا:

کافی است فایل main.m را در نرم افزار متلب اجرا نمایید.

آنچه تحویل داده می شود:

1. کد برنامه قابل اجرا در متلب  - خروجی طبق تصویر نمونه آورده شده (این برنامه درMatlab R2014a تست شده و 100 درصد به صورت تضمینی قابل اجرا می باشد)

 

2. فایل راهنمای اجرای برنامه

در صورتی که بخواهید می توانیم با قیمتی مناسب داکیومنت توضیحات این پروژه را تهیه کرده و تقدیم نماییم.

مناسب برای دانشجویان کارشناسی (لیسانس) و کاردانی و کارشناسی ارشد

 می توان به عنوان پروژه دروس کارشناسی یا کاردانی یا کارشناسی ارشد، دروسی مانند هوش مصنوعی، طراحی الگوریتم ها ، ژنتیک ، الگوریتم های پیشرفته ، هوش مصنوعی پیشرفته، یادگیری ماشین

 پس از خرید از درگاه امن بانکی، لینک دانلود در اختیار شما قرار میگیرد و همچنین به آدرس ایمیل شما فرستاده می شود. تماس با ما برای راهنمایی، درخواست مقالات و پایان نامه ها و یا ترجمه و یا انجام پروژه های برنامه نویسی و حل تمرینات با آدرس ایمیل:

ebarkat.shop@yahoo.com

یا شناسه تلگرام (آی دی تلگرام ما): @ebarkat

توجه: اگر کارت بانکی شما رمز دوم ندارد و یا در خرید الکترونیکی به مشکل برخورد کردید و یا به هر دلیلی تمایل به پرداخت الکترونیکی ندارید با ما تماس بگیرید تا راههای دیگری برای پرداخت به شما پیشنهاد کنیم.

توجه توجه توجه: هرگونه کپی برداری و فروش فایل های فروشگاه برکت الکترونیک (به آدرس ebarkat.ir یا codes.sellfile.ir) در فروشگاه های دیگر شرعاً حرام است، تمامی فایل ها و پروژه های موجود در فروشگاه، توسط ما اجرا و پیاده سازی و یا از منابع معتبر زبان اصلی جمع آوری شده اند و دارای حق کپی رایت اسلامی می باشند.

از پایین همین صفحه (بخش پرداخت و دانلود) می توانید این پروژه را خریداری و دانلود نمایید.

کد محصول 303304


دانلود با لینک مستقیم


دانلود پروژه سورس کد برنامه الگوریتم خوشه بندی کامینز KMeans Clustring Algorithm یادگیری ماشین به زبان متلب