هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

جزوه ترمودینامیک 1 پروفسور سیامک کاظم زاده حنانی دانشگاه صنعتی شریف

اختصاصی از هایدی جزوه ترمودینامیک 1 پروفسور سیامک کاظم زاده حنانی دانشگاه صنعتی شریف دانلود با لینک مستقیم و پر سرعت .

جزوه ترمودینامیک 1 پروفسور سیامک کاظم زاده حنانی دانشگاه صنعتی شریف


جزوه ترمودینامیک 1 پروفسور سیامک کاظم زاده حنانی دانشگاه صنعتی شریف

این جزوه به صورت تایپ شده است.

این جزوه ترمودینامیک 1 پروفسور سیامک کاظم زاده حنانی دانشگاه صنعتی شریف می باشد که به ارائه مباحث مطرح در این واحد درسی پرداخته است.

ترمودینامیک از مهمترین دروس کنکور ارشد رشته مهندسی مکانیک می باشد. این جزوه در 78 صفحه بوده و امیدواریم در جهت کمک به شما عزیزان مورد استفاده قرار بگیرد.

شما دانشجویان عزیز با خواندن این جزوه تقریبا به تمام سوالات ترمودینامیک 1 در کنکور ارشد می توانید پاسخ بدهید.

(عکس صفحه اول جزوه را می توانید مشاهده کنید. ممکن است کیفیت این عکس پایین به نظر برسد اما فایل دانلودی از کیفیت مطلوبی برخوردار است.)


دانلود با لینک مستقیم


جزوه ترمودینامیک 1 پروفسور سیامک کاظم زاده حنانی دانشگاه صنعتی شریف

دانلود مقاله بعضی از کاربردهای قانون دوم ترمودینامیک

اختصاصی از هایدی دانلود مقاله بعضی از کاربردهای قانون دوم ترمودینامیک دانلود با لینک مستقیم و پر سرعت .

 

 

بعضی از کاربردهای قانون دوم ترمودینامیک
در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .

 

انتخاب متغیرهای مستقل :
ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .
(1)
معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمی‌کند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .
سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .
برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟
آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :
(2)
(3)
(4)
از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود می آورد تا توابع ترمودینامیکی تازه ای را معرفی کرد . به عنوان مثال برای ساده کردن محاسبة تبادلات بین کار و حرارت برای هر متغیر مستقل مشخص باید توجه داشت که این توابع ترمودینامیکی جدیدی دارای ویژگی مهم دیگری می باشد مثلاً همیشه به عنوان تابع پتانسیل برای انتقالات بین حالتهای تعادلی ، که دارای متغیرهای مستقل مختلفی هستند ، عمل می کند. یک روش عمودی برای بازنویسی یک تابع که دارای یک متغیر مستقل است به عنوان تابع تعادلی از سایر متغیرهای مستقل روشهای دگرگونی افسانه‌ای می باشد که در شکل (a1-17) نشان داده شده است . که ما هم اکنون برای یک متغیر مستقل توصیف می کنیم . شکل (a1-17) تابع y(x) را نشان میدهد . فرض کنید که بنا به دلایلی ، ما متغیر x را استفاده نمی کنیم بلکه شیب y(x) را در نقطه (x) حساب می کنیم و می‌نامیم . همانطوری که در شکل (b1-17) نشان داده شده اگر شیب و جداسازی در تمام نقاط y(x) مشخص شده باشند ، دسترسی اطلاعات برابر دانش همان y(x) است . بنابراین منحنی y(x) در شکل (1-17) می تواند به وسیله فرمولهای زیر توصیف شود .
(5)
(6)
تابع دگرگونی legendre از y است . برابر با است اما به عنوان یک متغیر مستقل به جای x برای عمل می کند . هنگامی که بیش از یک متغیر مستقل در نظر باشد به صورت زیر می نویسیم :
(7)
که در آن ها متغیرهای مستقل هستند و تابع را مشخص می‌کنند .
حال ما دگرگونی Legendre را برای تبدیل و به توابع مشابه نسبت به سایر جفت متغیرهای مستقل به کار می بریم . دوباره توجه داشته باشید که و را به عنوان متغیرهای مستقل در نظر گرفته ایم .
ما دگرگونی Legendre (S,V)u را برای یک تابع مشابه بررسی می کنیم . بر اساس معادله (5-17) ما به این نتیجه می رسیم که :

(8)
(9)
از معادله (1-17) ، مقدار به عنوان انرژی آزاد هلیوهلتز شناخته می‌شود . توجه بعدی در انتخاب P و T به عنوان متغیرهای مستقل می باشد . در این حالت ما دگرگونی Legendre را دربارة H(S,P) تشکیل می دهیم . یادآور می شویم . مجدد پیرو معادلة (5-17) در می یابیم که تابع مورد نیاز به شکل زیر است :

(10)
(11)
(12)
مقدار به عنوان انرژی آزاد گیبس شناخته شده است . هر دو تابع و توابع حالت هستند . به طور خلاصه برای هر مرحله ای ، مراحل به صورت زیر توصیف می شوند :
1)تغییرات در متغیرهای مستقل V و S

(13)
2)تغییرات در متغیرهای مستقل S و P
(14)
(15)
3)تغییرات متغیرهای مستقل T و V :
(16)
(17)
4)تغییرات متغیرهای مستقل T و P :
(18)
(19)
معادلات 13 و 15 و 17 و 19 به عنان روابط ماکسول شناخته شده اند . آنها نقش مهمی را در ترمودینامیک عملی بازی می کنند زیرا مقادیر مفید متغیرهای قابل اندازه گیری T و V و P را بدست می دهند .

 

مفهوم کلرمفید
کاری که در جریان یک واکنش رخ می دهد بستگی به راهی دارد که برای مرتب کردن حالتهای ابتدایی و انتهایی استفاده می شود . تعدادی از حالت های مخصوص وجود دارد که در آنها کار انجام شده فقط به تغییر حالت بستگی دارد به عنوان در جریان یک کار آدیاباتیک . حال باید در مورد محدودیت عنوان شده به وسیله قانون دوم در مورد برگرداندن گرما به کار بحث کرد . توجه کنید که یک سیستم بسته د تماس با یک منبع حرارتی که دمایش است ، باشد . فرض کنید که سیستم دستخوش تغییر حالت از است . حداکثر کاری که می تواند توسط سیستم انجام شود چقدر ؟ سایر سیستمها در محیط می تواند بر این تغییر حالت از کمک کنند .
برای هر جریان در سیستم ، قانون اول نیازمند کار انجام شده و تغییر انرژی داخلی یک سیستم است و به صورت زیر است .

یا به فرم دیفرانسیلی
(20)
برای هر ذره خیلی کوچک راه از معادلة دیفرانسیلی (20) استفاده می‌کنیم . توجه کنید به حالتی که انتقال گرما به سیستم در هر ذره خیلی کوچک از راه دیفرانسیلی q ، برگشت پذیر است .
این موتور در بین دماهای و کار می کند که دمایی است که در طول دورة انتقال گرما مصرف می شود . به خاطر اینکه گرما در طوب موتور منتقل می شود ، کار بوسیلة دستگاه در طول انتقال گرما در سیستم انجام می شود.
در روشی که گرمای به سیستم در دمای T منتقل می شود ، کار انجام شده بوسیلة موتور برابر است با :
(21)
برای یک انتقال گرمای برگشت پذیر ، تغییر آنتروپی سیستم است زیرا T دمای چشمة گرمایی است . به طور معمول ، موتور اگر دما را در حد T تأمین کند ، برای سیستم داریم :
(a22)
فرض کنید یک موتور متفاوتی برای ذرة بسیار کوچکی از راه استفاده شده در نتیجه :
(b22)
که T دمای چشمة گرما است و با متفاوت است . با استفاده از که ثابت است با معادله (b22/17) را در ضرب می کنیم و داریم :
(23)
که بعد از ترکیب با ( 20-17) داریم :
(24)
توجه داشته باشید که کار کل انجام شده روی سیستم توسط موتورهای برگشت پذیر که همه با هم گرما را از محیط جمع می کنند برابر است با
(25)
بنابراین کل کار انجام شده توسط موتورهای و سیستم برابر است با :
(26)
اگر تمام جریانها برگشت پذیر باشند علامت مساوی در رابطه (26) برقرار می‌شود .
(27)
(28) (ثابت)V
(29) (ثابت) P =
(30) (V ثابت و دمای ابتدایی و انتهایی برابر است)
(31) (P ثابت و دمای ابتدایی و انتهایی برابر است )
در هر دو معادلة 30 و 31 دمای سیستم در حالتهای (1) و (2) باید باشد اما می تواند در طول تغییر کند .

 

تغییرات‌ آنتروپی در جریانهای برگشتی :
حال باید طبیعت وابستگی دمای آنتروپی یک سیستم تک ترکیبی را آزمایش کنیم . سپس با استفاده از این اطلاعات ما می توانیم تغییر آنتروپی همراه با تغییر عمومی حالت ترمودینامیکی را محاسبه کنیم . این کار راحت تر است که از دو قانون اول و دوم برای جریانهای عمومی خیلی کوچک استفاده کرد مثل معادله (1-17)
(32)
بنابراین ، سرعت تغییر آنتروپی را بوسیله دما در حجم ثابت اندازه‌گیری می کند . حال فرض کنید که سیستم متشکل از یک ترکیب از حالت پیروی می کند و حالت یک سیستم با دو متغیر ، از سه متغیر (V و P و T) تعیین می شود . از آنجا که آنتروپی تابع حالت است تمام راهها بین حالتهای 1 و 2 باید دارای تغییر آنتروپی یکسانی باشند .
توجه داشته باشید در ابتدا به راهی که شامل یک تغییر دمایی ایزوکریک است که همراه با یک تغییر حجم ایزوترمال است . (شکل a2-17 را نگاه کنید) در طول این راه ما آنتروپی را به عنوان تابع ای از متغیرهای مستقل V و T در نظر می گیریم . بنابراین ، یک تغییر دیفرانسیلی در آنتروپی می تواند به صورت زیر نوشته شود :
(33)
یا
(34)
اما همانطور که در معادله (17) داشتیم
(35)
ما سپس مقدار آنتروپی را در حالتهای (1) و (2) متفاوت می بینیم ، محاسبات از طریق راه توصیف شده می دهد :
(36)
نوشتن معادله به صورت (36) این سود را دارد که این امکان را می دهد تا محاسبات تغییرات آنتروپی از جریان در طول مراحل ، معادلة حالت پیروی کند .
از آنجا که تغییر حالت همیشه در داخل منطقة تک فازی یک داده است ، معادلة (36) نتیجة عمومی قابل استفاده برای تمام سیستمهای تک ترکیبی است .
نتیجه عمومی عنوان شده در معادله (36) بسیار کلی است در مواردی که ما می خواهیم یک حالت ساده از یک گاز کامل را بررسی کنیم . در این موارد ما داریم :
(37)
حال فرض کنید ظرفیت گرمایی هر مول در حجم ثابت ، مستقل از دما است و معادله (37) را در معادله (36* وارد کنید ، نتیجه می شود فرمول (38) که برای n مول گاز کامل است .
(38)
مهم است که مشاهده کنیم چگونه خواص یک معادله حالت استفاهد می شود برای کاهش و تبدیل معادله (36) به معادله مشخص (38) . توجه داشته باشید همیشه ، چگونه آنتروپی افزایش می یابد به طور معلوم هنگامی که دما و یا حجم سیستم افزایش می یابد ، این عمل رخ می دهد .
در انبساط هم دما در یک گاز کامل است در نتیجه تغییرات آنتروپی بدست آمده باید مثبت باشد . هنگامی که انرژی یک گار کامل افزایش داده شود دو حجم ثابت ما همیشه داریم و بنابراین آنتروپی افزایش می یابد . معادله 38 تغییرات آنتروپی را به صورت مقادیر عددی ماکروسکوپی نشان می دهد .
(39)
(40)
همانطور که انتظار می رود معادله 40 ، شکل مخصوصاً ساده برای یک گاز کامل دارد و سپس ما داریم
(41)
در حالی که برای گار کامل داریم :
(42)
فرمول عمومی برای تغییر انرژی معادله (40) ، برای هر سیستم تک فازی یا تک ترکیبی که بوسیله متغیرهای V و P و ‍T مشخص شده درست است . در مقابل معادلات (41) و (42) فقط بیانیة سازگاری داخلی هستند .
(43)
در حقیقت معادله (43) تعریفی لازم برای مشخص کردن است . معادلات (41) و (42) هر یک بیان کنندة مجدد این حالت هستند. تنها نوع انرژی که یک گاز کامل دارد انرژی سیمتیکی مولکولهای ترکیب است بنابراین U می‌تواند فقط تابع ای از دما و تعداد مولکولها در یک نمونه گاز می باشد .
تغییر آنتروپی نشان داده شده در معادله (36) نشان دهنده نتیجه انتخاب V و T به عنوان متغیرهای مستقل است .
البته ما می توانیم P و T را به عنوان متغیرهای مستقل در نظر بگیریم . بر حسب کار آزمایشگاهی ، انتخاب یک یا دگیری از جفت های (‍V,T) یا (P,T) می‌تواند راحتی کار ما را تعیین کند .
اگر P و T به عنوان متغیرهای مستقل انتخاب شوند که حالت سیستم را توصیف می کنند ، ما می بینیم که دمای ایزوباریک از به تغییر می کند و فشار ایزوترمال از به تغییر می کند همانطوری که در شکلها (b2-17) و معادله 33 دیده می شود .

(44)
(45)
بر اساس تعریف آنتالپی و استفاده از معادلات 36 و 19 داریم :
(46)
بر اساس اینکه تغییر حالت همیشه در یک قسمت تک فازی ماده است معادله 46 ، همیشه یک نتیجع عمومی و واحد دارد . حالت سادة یک گاز کامل قابل توجه است . در این حالت برای n مول از گاز داریم
(47)
بر طبق گفته های قبلی ، اگر فرض کنیم که ثابت مستقل از دماست . معادلة (47) به صورت زیر می شود :
(48)
توجه کنید که چگونه تغییر آنتروپی افزایش می یابد هنگامی که نسبت فشار انتهایی و آغازین کاهش پیدا می کند .
در انتها برای جمع بندی مطالب ، ما توجه داریم به محاسبه تغییر آنتالپی که همراه تغییر حالت سیستم در آزمایش می باشد . آغاز از معادله (12) که مشابه معادله (39) است رابطه زیر را می دهد .
(49)
البته ما باید ضریب را در مراحل معادلة حالت یک ماده اعمال گنکنیم . بر اساس معادلة 12 و 19 داریم :
(50)
و در انتها برای رابطة زیر را بدست می آوریم :
(51)
معادله (51) برای گاز کامل ساده است زیرا انرژی داخلی و آنتالپی فقط در مرحلة PV با یکدیگر فرق دارند که در یک گاز کامل همان nRT است . از آنجا که U گاز کامل فقط به T بستگی دارد ما نتیجه می گیریم که H گاز کامل نیز باید به طور مشابهی به T بستگی داشته باشد .
(52)
با توجه به معادله (51) و با فرض اینکه Cp مستقل از دما است . داریم
(53)
تغییرات آنتروپی در جریانهای غیربرگشتی
حال ما باز می گردیم به بحث طبیعت جریانهای غیربرگشتی و ارتباط بین غیربرگشتی و تابع آنتروپی .
توجه داشته باشید به کار انجام شده توسط یک سیال در یک جریان غیربرگشتی . به طور معلوم برای یک سیال می توان نوشت :
(54)
و تفاوت کلی میان و بستگی دارد به طرز و روش انتگرال گیری از معادله 54 و ارتباط بین فشار به کار برده شده و فشار سیستم .
برای ارزیابی کار انجام شده ، فشار قرار داده شده در معادلة 54 ، همیشه فشار خارجی است در مقابل جریان کار غیربرگشتی فشار خارجی و فشار سیستم فرق دارند . برای یک جریان انبساطی این مشاهدات نشان می دهد که است زیرا است . به طوری مشابه برای جریان انقباضی ، اندازه کار غیربرگشتی نیازمند همان اندازه فشاری است که یک کار برگشتی نیاز دارد ، زیرا در این حالت .
همیشه . به طور کلی اگر ما تمام تغییرات برگشتی و غیربرگشتی ممکن را بین نقاط انتهایی همانندی مورد توجه قرار دهیم ، قانون اول ترمودینامیک می گوید چون انرژی داخلی ، یک تابع حالت است بنابراین مستقل از روش استفاده شده استا ، تغییر برگشتی حالت ، گرمای زیادی از تمام تغییرات حالت غیربرگشتی جذب می کند . حال اگر نقاط پایانی یکسان باشند داریم
(55)
(56) (هم برای انقباض و هم برای انبساط)
(57) (هم برای انقباض و هم برای انبساط)
اگر نظریة ترمودینامیک به طور کاملی می تواند جریانهای برگشتی و غیربرگشتی و نتایج آنها را تشخیص دهد ، منبع یک جریان غیربرگشتی که در یک سرعتی غیر از صفر صورت گرفته نمی تواند بوسیلة قوانین ترمودینامیک معلوم شود . همچنین برای فهم بیشتر اینکه منابع غیربرگشتی در هر جریان داده شده از کجا تامین می شوند ما باید از تعدادی نظریة سینیتیکی تجزیه ای استفاده کنیم .
ساده ترین و مشخص ترین مثال از اینکه چگونه رفتار شود با جریانی که سرعتش صفر نباشد ، پراکندگی است که بوسیلة یک سیستم ایجاد شده است.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  31  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله بعضی از کاربردهای قانون دوم ترمودینامیک

دانلود مقاله ترمودینامیک شیمیایی

اختصاصی از هایدی دانلود مقاله ترمودینامیک شیمیایی دانلود با لینک مستقیم و پر سرعت .

 
ترمودینامیک شیمیایی تعیین سمت و سوی واکنش ترمودینامیک شیمیایی در عمل ، برقراری چهارچوبی برای تعیین امکان پذیربودن یا خود به خود انجام شدن تحولی فیزیکی یا شیمیایی معین است. به عنوان مثال ، ممکن است به حصول معیاری جهت تعیین امکان پذیر بودن تغییری از یک فاز به فاز دیگر بطور خود به خود مانند تبدیل گرافیت به الماس یا با تعیین سمت و سوی خود به خود انجام شدن واکنشی زیستی که در سلول اتفاق می‌افتد، نظر داشته باشیم. در حلاجی این نوع مسائل ، چند مفهوم نظری و چند تابع ریاضی دیگر بر مبنای قوانین اول و دوم ترمودینامیک و برحسب توابع انرژی گیبس ابداع شده‌اند که شیوه‌های توانمندی برای دستیابی به پاسخ آن مسائل ، در اختیار قرار داده‌اند. تعادل پس از تعیین شدن سمت و سوی تحولی طبیعی ، ممکن است علم بر میزبان پیشرفت آن تا رسیدن به تعادل نیز مورد توجه باشد. به عنوان نمونه ، ممکن است حداکثر راندمان تحولی صنعتی یا قابلیت انحلال دی‌اکسید کربن موجود در هوا ، در آبهای طبیعی یا تعیین غلظت تعادلی گروهی از متابولیتها ( Metabolites ) در یک سلول مورد نظر باشد. روشهای ترمودینامیکی ، روابط ریاضی لازم برای محاسبه و تخمین چنین کمیت‌هایی را بدست می‌دهد. گرچه هدف اصلی در ترمودینامیک شیمیایی ، تجزیه و تحلیل در بررسی امکان خود به خود انجام شدن یک تحول و تعادل می‌باشد، ولی علاوه بر آن ، روشهای ترمودینامیکی به بسیاری از مسائل دیگر نیز قابل تعمیم هستند. مطالعه تعادلهای فاز ، چه در سیستم‌های ایده آل و چه در غیر آن ، پایه و اساس کار برای کاربرد هوشمندانه روشهای استخراج ، تقطیر و تبلور به عملیات متالوژی و درک گونه‌های کانی‌ها در سیستم‌های زمین‌ شناسی می‌باشد. تغییرات انرژی همین طور ، تغییرات انرژی ، همراه با تحولی فیزیکی یا شیمیایی ، چه به صورت کار و چه به صورت گرما مورد توجه جدی قرار دارند؛ این تحول ممکن است احتراق یک سوخت ، شکافت هسته اورانیوم یا انتقال یک متابولیت در بستر گرادیان غلظت باشد. مفاهیم و روشهای ترمودینامیکی ، نگرشی قوی برای درک چنان مسائلی را فراهم می آورد که در شیمی فیزیک مورد بررسی قرار می‌گیرند. الکتروشیمی تمام واکنش‌های شیمیایی ، اساسا ماهیت الکتریکی دارند؛ زیرا الکترونها ، در تمام انواع پیوندهای شیمیایی (به راههای گوناگون) دخالت دارد. اما الکتروشیمی ، بیش ار هر چیز بررسی پدیده های اکسایش- کاهش (Oxidation - Reduction) است. روابط بین تغییر شیمیایی و انرژی الکتریکی ، هم از لحاظ نظری و هم از لحاظ عملی حائز اهمیت است. از واکنش‌های شیمیایی می‌توان برای تولید انرژی الکتریکی استفاده کرد، (در سلولهایی که "سلولها یا پیلهای ولتایی" یا "سلولهای گالوانی" نامیده می‌شوند) و انرژی الکتریکی را می‌توان برای تبادلات شیمیایی بکار برد (در سلولهای الکترولیتی). علاوه بر این، مطالعه فرایندهای الکتروشیمیایی منجر به فهم و تنظیم قواعد آن گونی از پدیده های اکسایش- کاهش که خارج از این گونه سلولها یا پیلها روی می دهد نیز می‌شود. سینتیک شیمیایی (Chemical Kinetic) سینتیک شیمیایی عبارت از بررسی سرعت واکنش‌های شیمیایی است. سرعت یک واکنش شیمیایی را عوامل معدودی کنترل می‌کنند. بررسی این عوامل ، راههایی را نشان می‌دهد که در طی آنها ، مواد واکنش‌دهنده به محصول واکنش تبدیل می‌شوند. توضیح تفضیلی مسیر انجام واکنش بر مبنای رفتار اتم‌ها ، مولکول‌ها و یون‌ها را "مکانیسم واکنش" می‌نامیم. در ترمودینامیک و الکتروشیمی ، کارها پیش‌بینی انجام واکنش بود؛ اما مشاهدات صنعتی ، نتایج ترمودینامیک شیمیایی را به نظر تایید نمی‌کند. در این حالت نبایستی فکر کنیم که پیش بینی ترمودینامیک اشتباه بوده است؛ چون ترمودینامیک کاری با میزان پیشرفت واکنش و نحوه انجام فرایندها ندارد. نظر به اهمیت انجام فرایندها از نظر بهره زمانی ، لازم است که عامل زمان در بررسی فرایندها وارد شود. به عنوان مثال ، کاتالیزورهای بخصوصی به نام "آنزیم‌ها" در تعیین این که کدام واکنش در سیستمهای زیستی با سرعت قابل ملاحظه به راه بیافتد، عواملی مهم هستند. مثلا مولکول "تری فسفات آدنوزین" (Adnosine triphosphate) از لحاظ ترمودینامیکی در محلولهای آبی ناپایدار بوده و باید هیدرولیز گردیده و به "دی فسفات آدنوزین" و یک فسفات معدنی تجزیه شود. در صورتی که این واکنش در غیاب آنزیمی ویژه ، "آدنوزین تری فسفاتاز" ، بسیار کند می‌باشد. در واقع همین کنترل ترمودینامیکی سمت و سوی واکنش‌ها به همراه کنترل سرعت آنها توسط آنزیمهاست که موجودیت سیستمی با تعادل بسیار ظریف ، یعنی سلول زنده را مقدور می‌سازد. بیشتر واکنش‌های شیمیایی طی مکانیسمهای چند مرحله‌ای صورت می‌گیرند. هرگز نمی‌توان اطمینان داشت که یک مکانیسم پیشنهاد شده ، بیانگر واقعیت باشد. مکانیسم واکنشها تنها حدس و گمانهایی بر اساس بررسیهای سینتیکی‌اند. ارتباط شیمی فیزیک با سایر علوم همانطور که عنوان شد و از نام شیمی فیزیک پیداست، این علم ، مسائل و پدیده‌های شیمیایی را با اصول و قوانین فیزیک توجیه می‌کند و ارتباط تنگاتنگی میان شیمی و فیزیک برقرار می‌کند. علاوه بر آن ، روابط بسیار پیچیده شیمیایی با زبان ریاضی ، مرتب و طبقه‌بندی شده و قابل فهم می‌گردد. بسیاری از پدیده‌های زیستی مانند سوخت و ساز مواد غذایی در سلولهای بدن با علم شیمی فیزیک توجیه می‌شود و این ، ارتباط شیمی فیزیک را با زیست شناسی و به تبع آن پزشکی بیان می‌کند.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   12 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله ترمودینامیک شیمیایی

جزوه کامل درس ترمودینامیک به همراه نکات تستی

اختصاصی از هایدی جزوه کامل درس ترمودینامیک به همراه نکات تستی دانلود با لینک مستقیم و پر سرعت .

جزوه کامل درس ترمودینامیک به همراه نکات تستی


جزوه کامل درس ترمودینامیک به همراه نکات تستی

نام جزوه : جزوه کامل درس ترمودینامیک به همراه نکات تستی

ناشر : daneshjofile.ir

تهیه و تنظیم: علی شریعت

نام درس: فیزیک 3 و آزمایشگاه – از رشته ریاضی فیزیک

توضیحات:

جزوه ترمودینامیک شامل همه مطالب کتاب درسی، نکات تستی به همراه تمرینات زیاد برای آمادگی در امتحانات نهایی آماده شده

 



فهرست

ماشین های گرمایی
کمیت های ماکروسکوپیک
معادله حالت
تعادل ترمودینامیکی
متغیرهای ترمودینامیکی
گاز کامل
معادله حالت گاز کامل
فرآیندهای ترمودینامیکی
تبادل انرژی
بحث و تجزیه و تحلیل قضیه
مخلوط چند گاز
انرژی درونی
قانون اول ترمودینامیک
فرآیندهای خاص
فرآیند هم حجم
فرآیند هم فشار
محاسبه کار
محاسبه گرما
ظرفیت گرمای مولی
فرآیند هم دما
فرآیند بی دررو
چرخه ترمودینامیکی
ماشین های گرمایی
 ماشین های بخار
ماشین گرمایی درون سوز
مرحله مکش
مرحله تراکم
مرحله آتش گرفتن
مرحله انجام کار
مرحله تخلیه و خروج کامل گاز
بازده ماشین های گرمایی
قانون دوم ترمودینامیک به بیان ماشین های گرمایی
چرخه کارنو
ضریب عملکرد یخچال
قانون دوم ترمودینامیک به بیان یخچالی
پرسش ها
مسئله ها


دانلود با لینک مستقیم


جزوه کامل درس ترمودینامیک به همراه نکات تستی

تحقیق قانون دوم ترمودینامیک

اختصاصی از هایدی تحقیق قانون دوم ترمودینامیک دانلود با لینک مستقیم و پر سرعت .

تحقیق قانون دوم ترمودینامیک


تحقیق قانون دوم ترمودینامیک

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:13

فهرست مطالب :

1.    بیان کلوین – پلانک و بیان کلازیوس
2.    فرآیند بازگشت پذیر
3.    انتقال حرارت به دلیل اختلاف درجه حرارت محدود
4.    سیکل کارنو
5.    دو قضیه در مورد کارآیی سیکل کارنو
6.    ماشین استرلینگ
7.    ماشین های درون سوز

 

 

چکیده:

قـانون اول ترمـودینامیـک بـدیـن قـرار اسـت : در طـی هر سیکلی که یک سیستم می پیماید، انتگرال سیکلی حرارت با انتگرال سیکلی کار برابر است . در عین حال ، قانون اول هیچ گونه محدودیتی برای جهت جریان حرارت و کار ایجاد نمی کند . سیکلی که در آن مقدار مشخصی حرارت از سیستم منتقل شده و همان مقدار کار بر سیستم انجام شده باشد نیز مانند سیکلی که جریان حرارت و کار آن عکس حالت ذکر شده است با قانون اول همخوانی دارد . اما با توجه به تجربیات خود می دانیم که متناقض نبودن یک سیکل با قانون اول ، دلیلی بر این نیست که آن سیکل حتماً اتفاق می افتد . این نوع مشاهدات تجربی منجر به تنظیم قانون دوم ترمودینامیک می شود . پس فقط آن سیکل قابل وقوع است که با قوانین اول و دوم ترمودینامیک همخوانی داشته باشد .
مفهوم جامع قانون دوم متضمن این است که یک فرآیند فقط در یک جهت معین پیش می رود ولی در جهت خلاف ، قابل وقوع نیست . یک لیوان چای داغ با انتقال حرارت به محیط ، سرد می شود ولی حرارت نمی تواند در جهت خلاف و از محیط سردتر به لیوان چای داغ تر ، منتقل شود .
دو بیان کلاسیک از قانون دوم وجود دارد : بیان کلوین – پلانک و بیان کلازیوس .
بیان کلوین – پلانک : غیر ممکن است ، وسیله ای بسازیم که در یک سیکل عمل کند و در عین حال که فقط با یک مخزن تبادل حرارت دارد ، اثری بجز صعود وزنه داشته باشد .
این بیان به بحث ما درباره موتور حرارتی مربوط می شود و بدین معنی است که غیرممکن است موتور حرارتی بیابیم که در یک سیکل عمل کند و مقدار مشخصی حرارت را از جسم درجه حرارت بالا دریافت کند و همان مقدار کار انجام دهد . تنها صورت دیگر آن است که باید مقداری حرارت از سیال فعال با درجه حرارت پایین تر به یک جسم درجه حرارت پایین انتقال یابد . پس اگر دو سطح حرارتی وجود داشته باشد و حرارت از جسم درجه حرارت بالا به موتور حرارتی و نیز از موتور حرارتی به جسم درجه حرارت پایین انتقال یابد ، می توان با انتقال حرارت کار انجام داد . یعنی امکان ندارد موتور حرارتی بسازیم که کارآیی حرارتی آن صد در صد باشد .
بیان کلازیوس : غیر ممکن است وسیله ای بسازیم که در یک سیکل عمل کند و تنها اثر آن انتقال حرارت از جسم سردتر به جسم گرمتر باشد .
این بیان مربوط به یخچال یا پمپ حرارتی است و بدین معنی است که نمی توان یخچالی ساخت که بدون کار ورودی عمل کند . همچنین این بیان رساننده این معنی است که ضریب عمکرد همیشه کوچکتر از بینهایت است .
در مورد این دو بیان باید سه مطلب را در نظر داشت . ابتدا اینکه، هر دو بیان منفی هستند. البته اثبات بیان منفی ناممکن است ولی می توان گفت که قانون ترمودینامیک (همانند بسیاری از قوانین طبیعت) بر مشاهدات تجربی متکی است. هر آزمایش مربوطی که صورت گرفته به طور مستقیم یا غیرمستقیم موید قانون دوم بوده و هیچ آزمایشی منجر به نقض قانون دوم نشده است . بنابراین اساس قانون دوم بر مشاهدات تجربی قرار دارد .


دانلود با لینک مستقیم


تحقیق قانون دوم ترمودینامیک