اختصاصی از
هایدی دانلود مقاله بعضی از کاربردهای قانون دوم ترمودینامیک دانلود با لینک مستقیم و پر سرعت .
بعضی از کاربردهای قانون دوم ترمودینامیک
در این بخش ما تعداد بیشتری از نتایج قانون دومترمودینامیک را بوسیله محاسبات تغییرات آنتروپی همراه با یک جریان گوناگون آزمایش می کنیم . برای سادگی کار ، ما توجه خود را به یک ترکیب سیستم بسته جلب می کنیم . حالتی که بوسیلة دو متغیر از سه متغیر V و T و P مشخص می شود .
انتخاب متغیرهای مستقل :
ترکیب دو قانون اول و دوم نیازمند این است که تغییرات دیفرانسیلی در انرژی داخلی به صورت زیر باشد .
(1)
معادلة (1) برای هر دو واکنش برگشت پذیر و برگشت ناپذیر درست است زیرا مربوط به توابع حالت S و U و V می باشد . محاسبة ds برای یک جریان برگشت ناپذیر نیازمند این است که ما یک راه برگشت پذیر میان حالتهای ابتدایی و انتهایی پیدا کنیم ، اما ds یک دیفرانسیل واقعی است و رابطه ای که در معادلة (1) عنوان شده ، جریانی است که محیط اطراف خود تبعیت نمیکند. معادلة (1) اینگونه عنوان می کند که تغییر انرژی در یک جریان به طور مشخصی آشکار است هنگامی که تغییر از ، تغییر دادن حجم هنگامی که آنتروپی ثابت است و برعکس متأثر باشد .
سپس برای S ثابت ، شیب U برخلاف V فقط فشار است و برای V ثابت ، شیب U بر خلاف S فقط دما است . سادگی این تفسیر از سرعتهای تغییر U با توجه به تغییرات S و V و با توجه به متغیرهای P ، V ، T ، S و V را به عنوان متغیرهای مستقل طبیعی تابع U معرفی و طبقه بندی می کنیم .
برای هر تابع حالت ترمودینامیکی ، ما متغیرهای طبیعی را مشخص می کنیم . این تفسیر حاللتی را بوجود می آورد برای معرفی کردن یک دگرگونی متغیرها ، مثل جایی که یک تابع y(x) از متغیر مستقل X بازنویسی شده به عنوان یک تابعی که در آن مشتق y(x) نسبت به x یک متغیر مستقل است . چرا یک فرد باید متغیرهای طبیعی یک تابع حالت ترمودینامیکی را پیدا کند ؟
آزمایشات آزمایشگاهی معمولاً در شرایطی انجام می شوند که مقدار T و P ثابت فرض می شود یا گاهی اوقات V و T را ثابت می گیرند . مطمئناً می توان تغییر در U را با توجه به تغییرات در P و T محاسبه کرد یا با توجه به سایر جفت متغیرهای مستقل نیز می توان محاسبه کرد . اگرچه شکلهای منتج بسیار کامل تر از معادله (1) ، به طور حسی ضریب ، ضرب شده در تغییرات متغیرهای مستقل مشتق U با توجه به متغیرهای انتخابی نیستند بلکه آنها ترکیبی هایی از توابع مربوط به خواص سیستم هستند . برای مثال ، انتخاب T و V به عنوان متغیرهای مصتقل برای U می دهد :
(2)
(3)
(4)
از معادلة (1) نتیجه می شود که ، بنابراین ضریب dv در معادله (3) می تواند بر مبنای مقادیر T و V و P بیان شود . سرعت تغییر U با توجه به تغییرات در V بوسیله تراز بین P و مشخص می شود که به آسانی هنگامی که S و V را به عنوان متغیر مستقل انتخاب می کنیم نیست . این بیانیه ، این انگیزه را به وجود می آورد تا توابع ترمودینامیکی تازه ای را معرفی کرد . به عنوان مثال برای ساده کردن محاسبة تبادلات بین کار و حرارت برای هر متغیر مستقل مشخص باید توجه داشت که این توابع ترمودینامیکی جدیدی دارای ویژگی مهم دیگری می باشد مثلاً همیشه به عنوان تابع پتانسیل برای انتقالات بین حالتهای تعادلی ، که دارای متغیرهای مستقل مختلفی هستند ، عمل می کند. یک روش عمودی برای بازنویسی یک تابع که دارای یک متغیر مستقل است به عنوان تابع تعادلی از سایر متغیرهای مستقل روشهای دگرگونی افسانهای می باشد که در شکل (a1-17) نشان داده شده است . که ما هم اکنون برای یک متغیر مستقل توصیف می کنیم . شکل (a1-17) تابع y(x) را نشان میدهد . فرض کنید که بنا به دلایلی ، ما متغیر x را استفاده نمی کنیم بلکه شیب y(x) را در نقطه (x) حساب می کنیم و مینامیم . همانطوری که در شکل (b1-17) نشان داده شده اگر شیب و جداسازی در تمام نقاط y(x) مشخص شده باشند ، دسترسی اطلاعات برابر دانش همان y(x) است . بنابراین منحنی y(x) در شکل (1-17) می تواند به وسیله فرمولهای زیر توصیف شود .
(5)
(6)
تابع دگرگونی legendre از y است . برابر با است اما به عنوان یک متغیر مستقل به جای x برای عمل می کند . هنگامی که بیش از یک متغیر مستقل در نظر باشد به صورت زیر می نویسیم :
(7)
که در آن ها متغیرهای مستقل هستند و تابع را مشخص میکنند .
حال ما دگرگونی Legendre را برای تبدیل و به توابع مشابه نسبت به سایر جفت متغیرهای مستقل به کار می بریم . دوباره توجه داشته باشید که و را به عنوان متغیرهای مستقل در نظر گرفته ایم .
ما دگرگونی Legendre (S,V)u را برای یک تابع مشابه بررسی می کنیم . بر اساس معادله (5-17) ما به این نتیجه می رسیم که :
(8)
(9)
از معادله (1-17) ، مقدار به عنوان انرژی آزاد هلیوهلتز شناخته میشود . توجه بعدی در انتخاب P و T به عنوان متغیرهای مستقل می باشد . در این حالت ما دگرگونی Legendre را دربارة H(S,P) تشکیل می دهیم . یادآور می شویم . مجدد پیرو معادلة (5-17) در می یابیم که تابع مورد نیاز به شکل زیر است :
(10)
(11)
(12)
مقدار به عنوان انرژی آزاد گیبس شناخته شده است . هر دو تابع و توابع حالت هستند . به طور خلاصه برای هر مرحله ای ، مراحل به صورت زیر توصیف می شوند :
1)تغییرات در متغیرهای مستقل V و S
(13)
2)تغییرات در متغیرهای مستقل S و P
(14)
(15)
3)تغییرات متغیرهای مستقل T و V :
(16)
(17)
4)تغییرات متغیرهای مستقل T و P :
(18)
(19)
معادلات 13 و 15 و 17 و 19 به عنان روابط ماکسول شناخته شده اند . آنها نقش مهمی را در ترمودینامیک عملی بازی می کنند زیرا مقادیر مفید متغیرهای قابل اندازه گیری T و V و P را بدست می دهند .
مفهوم کلرمفید
کاری که در جریان یک واکنش رخ می دهد بستگی به راهی دارد که برای مرتب کردن حالتهای ابتدایی و انتهایی استفاده می شود . تعدادی از حالت های مخصوص وجود دارد که در آنها کار انجام شده فقط به تغییر حالت بستگی دارد به عنوان در جریان یک کار آدیاباتیک . حال باید در مورد محدودیت عنوان شده به وسیله قانون دوم در مورد برگرداندن گرما به کار بحث کرد . توجه کنید که یک سیستم بسته د تماس با یک منبع حرارتی که دمایش است ، باشد . فرض کنید که سیستم دستخوش تغییر حالت از است . حداکثر کاری که می تواند توسط سیستم انجام شود چقدر ؟ سایر سیستمها در محیط می تواند بر این تغییر حالت از کمک کنند .
برای هر جریان در سیستم ، قانون اول نیازمند کار انجام شده و تغییر انرژی داخلی یک سیستم است و به صورت زیر است .
یا به فرم دیفرانسیلی
(20)
برای هر ذره خیلی کوچک راه از معادلة دیفرانسیلی (20) استفاده میکنیم . توجه کنید به حالتی که انتقال گرما به سیستم در هر ذره خیلی کوچک از راه دیفرانسیلی q ، برگشت پذیر است .
این موتور در بین دماهای و کار می کند که دمایی است که در طول دورة انتقال گرما مصرف می شود . به خاطر اینکه گرما در طوب موتور منتقل می شود ، کار بوسیلة دستگاه در طول انتقال گرما در سیستم انجام می شود.
در روشی که گرمای به سیستم در دمای T منتقل می شود ، کار انجام شده بوسیلة موتور برابر است با :
(21)
برای یک انتقال گرمای برگشت پذیر ، تغییر آنتروپی سیستم است زیرا T دمای چشمة گرمایی است . به طور معمول ، موتور اگر دما را در حد T تأمین کند ، برای سیستم داریم :
(a22)
فرض کنید یک موتور متفاوتی برای ذرة بسیار کوچکی از راه استفاده شده در نتیجه :
(b22)
که T دمای چشمة گرما است و با متفاوت است . با استفاده از که ثابت است با معادله (b22/17) را در ضرب می کنیم و داریم :
(23)
که بعد از ترکیب با ( 20-17) داریم :
(24)
توجه داشته باشید که کار کل انجام شده روی سیستم توسط موتورهای برگشت پذیر که همه با هم گرما را از محیط جمع می کنند برابر است با
(25)
بنابراین کل کار انجام شده توسط موتورهای و سیستم برابر است با :
(26)
اگر تمام جریانها برگشت پذیر باشند علامت مساوی در رابطه (26) برقرار میشود .
(27)
(28) (ثابت)V
(29) (ثابت) P =
(30) (V ثابت و دمای ابتدایی و انتهایی برابر است)
(31) (P ثابت و دمای ابتدایی و انتهایی برابر است )
در هر دو معادلة 30 و 31 دمای سیستم در حالتهای (1) و (2) باید باشد اما می تواند در طول تغییر کند .
تغییرات آنتروپی در جریانهای برگشتی :
حال باید طبیعت وابستگی دمای آنتروپی یک سیستم تک ترکیبی را آزمایش کنیم . سپس با استفاده از این اطلاعات ما می توانیم تغییر آنتروپی همراه با تغییر عمومی حالت ترمودینامیکی را محاسبه کنیم . این کار راحت تر است که از دو قانون اول و دوم برای جریانهای عمومی خیلی کوچک استفاده کرد مثل معادله (1-17)
(32)
بنابراین ، سرعت تغییر آنتروپی را بوسیله دما در حجم ثابت اندازهگیری می کند . حال فرض کنید که سیستم متشکل از یک ترکیب از حالت پیروی می کند و حالت یک سیستم با دو متغیر ، از سه متغیر (V و P و T) تعیین می شود . از آنجا که آنتروپی تابع حالت است تمام راهها بین حالتهای 1 و 2 باید دارای تغییر آنتروپی یکسانی باشند .
توجه داشته باشید در ابتدا به راهی که شامل یک تغییر دمایی ایزوکریک است که همراه با یک تغییر حجم ایزوترمال است . (شکل a2-17 را نگاه کنید) در طول این راه ما آنتروپی را به عنوان تابع ای از متغیرهای مستقل V و T در نظر می گیریم . بنابراین ، یک تغییر دیفرانسیلی در آنتروپی می تواند به صورت زیر نوشته شود :
(33)
یا
(34)
اما همانطور که در معادله (17) داشتیم
(35)
ما سپس مقدار آنتروپی را در حالتهای (1) و (2) متفاوت می بینیم ، محاسبات از طریق راه توصیف شده می دهد :
(36)
نوشتن معادله به صورت (36) این سود را دارد که این امکان را می دهد تا محاسبات تغییرات آنتروپی از جریان در طول مراحل ، معادلة حالت پیروی کند .
از آنجا که تغییر حالت همیشه در داخل منطقة تک فازی یک داده است ، معادلة (36) نتیجة عمومی قابل استفاده برای تمام سیستمهای تک ترکیبی است .
نتیجه عمومی عنوان شده در معادله (36) بسیار کلی است در مواردی که ما می خواهیم یک حالت ساده از یک گاز کامل را بررسی کنیم . در این موارد ما داریم :
(37)
حال فرض کنید ظرفیت گرمایی هر مول در حجم ثابت ، مستقل از دما است و معادله (37) را در معادله (36* وارد کنید ، نتیجه می شود فرمول (38) که برای n مول گاز کامل است .
(38)
مهم است که مشاهده کنیم چگونه خواص یک معادله حالت استفاهد می شود برای کاهش و تبدیل معادله (36) به معادله مشخص (38) . توجه داشته باشید همیشه ، چگونه آنتروپی افزایش می یابد به طور معلوم هنگامی که دما و یا حجم سیستم افزایش می یابد ، این عمل رخ می دهد .
در انبساط هم دما در یک گاز کامل است در نتیجه تغییرات آنتروپی بدست آمده باید مثبت باشد . هنگامی که انرژی یک گار کامل افزایش داده شود دو حجم ثابت ما همیشه داریم و بنابراین آنتروپی افزایش می یابد . معادله 38 تغییرات آنتروپی را به صورت مقادیر عددی ماکروسکوپی نشان می دهد .
(39)
(40)
همانطور که انتظار می رود معادله 40 ، شکل مخصوصاً ساده برای یک گاز کامل دارد و سپس ما داریم
(41)
در حالی که برای گار کامل داریم :
(42)
فرمول عمومی برای تغییر انرژی معادله (40) ، برای هر سیستم تک فازی یا تک ترکیبی که بوسیله متغیرهای V و P و T مشخص شده درست است . در مقابل معادلات (41) و (42) فقط بیانیة سازگاری داخلی هستند .
(43)
در حقیقت معادله (43) تعریفی لازم برای مشخص کردن است . معادلات (41) و (42) هر یک بیان کنندة مجدد این حالت هستند. تنها نوع انرژی که یک گاز کامل دارد انرژی سیمتیکی مولکولهای ترکیب است بنابراین U میتواند فقط تابع ای از دما و تعداد مولکولها در یک نمونه گاز می باشد .
تغییر آنتروپی نشان داده شده در معادله (36) نشان دهنده نتیجه انتخاب V و T به عنوان متغیرهای مستقل است .
البته ما می توانیم P و T را به عنوان متغیرهای مستقل در نظر بگیریم . بر حسب کار آزمایشگاهی ، انتخاب یک یا دگیری از جفت های (V,T) یا (P,T) میتواند راحتی کار ما را تعیین کند .
اگر P و T به عنوان متغیرهای مستقل انتخاب شوند که حالت سیستم را توصیف می کنند ، ما می بینیم که دمای ایزوباریک از به تغییر می کند و فشار ایزوترمال از به تغییر می کند همانطوری که در شکلها (b2-17) و معادله 33 دیده می شود .
(44)
(45)
بر اساس تعریف آنتالپی و استفاده از معادلات 36 و 19 داریم :
(46)
بر اساس اینکه تغییر حالت همیشه در یک قسمت تک فازی ماده است معادله 46 ، همیشه یک نتیجع عمومی و واحد دارد . حالت سادة یک گاز کامل قابل توجه است . در این حالت برای n مول از گاز داریم
(47)
بر طبق گفته های قبلی ، اگر فرض کنیم که ثابت مستقل از دماست . معادلة (47) به صورت زیر می شود :
(48)
توجه کنید که چگونه تغییر آنتروپی افزایش می یابد هنگامی که نسبت فشار انتهایی و آغازین کاهش پیدا می کند .
در انتها برای جمع بندی مطالب ، ما توجه داریم به محاسبه تغییر آنتالپی که همراه تغییر حالت سیستم در آزمایش می باشد . آغاز از معادله (12) که مشابه معادله (39) است رابطه زیر را می دهد .
(49)
البته ما باید ضریب را در مراحل معادلة حالت یک ماده اعمال گنکنیم . بر اساس معادلة 12 و 19 داریم :
(50)
و در انتها برای رابطة زیر را بدست می آوریم :
(51)
معادله (51) برای گاز کامل ساده است زیرا انرژی داخلی و آنتالپی فقط در مرحلة PV با یکدیگر فرق دارند که در یک گاز کامل همان nRT است . از آنجا که U گاز کامل فقط به T بستگی دارد ما نتیجه می گیریم که H گاز کامل نیز باید به طور مشابهی به T بستگی داشته باشد .
(52)
با توجه به معادله (51) و با فرض اینکه Cp مستقل از دما است . داریم
(53)
تغییرات آنتروپی در جریانهای غیربرگشتی
حال ما باز می گردیم به بحث طبیعت جریانهای غیربرگشتی و ارتباط بین غیربرگشتی و تابع آنتروپی .
توجه داشته باشید به کار انجام شده توسط یک سیال در یک جریان غیربرگشتی . به طور معلوم برای یک سیال می توان نوشت :
(54)
و تفاوت کلی میان و بستگی دارد به طرز و روش انتگرال گیری از معادله 54 و ارتباط بین فشار به کار برده شده و فشار سیستم .
برای ارزیابی کار انجام شده ، فشار قرار داده شده در معادلة 54 ، همیشه فشار خارجی است در مقابل جریان کار غیربرگشتی فشار خارجی و فشار سیستم فرق دارند . برای یک جریان انبساطی این مشاهدات نشان می دهد که است زیرا است . به طوری مشابه برای جریان انقباضی ، اندازه کار غیربرگشتی نیازمند همان اندازه فشاری است که یک کار برگشتی نیاز دارد ، زیرا در این حالت .
همیشه . به طور کلی اگر ما تمام تغییرات برگشتی و غیربرگشتی ممکن را بین نقاط انتهایی همانندی مورد توجه قرار دهیم ، قانون اول ترمودینامیک می گوید چون انرژی داخلی ، یک تابع حالت است بنابراین مستقل از روش استفاده شده استا ، تغییر برگشتی حالت ، گرمای زیادی از تمام تغییرات حالت غیربرگشتی جذب می کند . حال اگر نقاط پایانی یکسان باشند داریم
(55)
(56) (هم برای انقباض و هم برای انبساط)
(57) (هم برای انقباض و هم برای انبساط)
اگر نظریة ترمودینامیک به طور کاملی می تواند جریانهای برگشتی و غیربرگشتی و نتایج آنها را تشخیص دهد ، منبع یک جریان غیربرگشتی که در یک سرعتی غیر از صفر صورت گرفته نمی تواند بوسیلة قوانین ترمودینامیک معلوم شود . همچنین برای فهم بیشتر اینکه منابع غیربرگشتی در هر جریان داده شده از کجا تامین می شوند ما باید از تعدادی نظریة سینیتیکی تجزیه ای استفاده کنیم .
ساده ترین و مشخص ترین مثال از اینکه چگونه رفتار شود با جریانی که سرعتش صفر نباشد ، پراکندگی است که بوسیلة یک سیستم ایجاد شده است.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 31 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلود با لینک مستقیم
دانلود مقاله بعضی از کاربردهای قانون دوم ترمودینامیک