هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

گزارش کارآموزی شرکت ماشین سازی اراک – گروه متالوژی

اختصاصی از هایدی گزارش کارآموزی شرکت ماشین سازی اراک – گروه متالوژی دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی شرکت ماشین سازی اراک – گروه متالوژی


گزارش کارآموزی شرکت ماشین سازی اراک – گروه متالوژی

گزارش کارآموزی شرکت ماشین سازی اراک – گروه متالوژی

فرمت فایل: سه فایل پی دی اف و دو فایل ورد

تعداد صفحات: 35

 

 

 

 

 

انواع شیرها

 

شیرها به انواع مختلفی تقسیم می شوند که این تقسیم بندی بر اساس تحریک آنها ست که انواع تحریک شامل 1- تحریک دستی (خارکی ) 2-پوش باتوم – فنری - پدالی 3 - بادی (مسترولو ) -memory ( حافظه )4 – سولئوئیدولو

 

تحریک دستی : در نوعی از شیرها دارای اهرمی هستند که با جا به جا کردن این اهرم می توان مسیر باد را تغییر داد وگاهاَ نوعی از همین شیرهای تحریک دستی دارای یک پورتی هستند که برگشت اهرم را می توان با باد انجام داد باید توجه کرد که حالت رفت را باید دستی اعمال کرد ولی حالت برگشت را هم می توان به صورت دستی اعمال کرد هم به صورت بادی که انتخاب آن با طراح مدار نپوماتیکی است به عبارت دیگر تحریک برگشت اهرم هم دستی وهم بادی می تواند باشد .

 

پوش باتوم : یک نوع شیر‌‌‌‌‌‌‌‌‌‌‌‌‌است به صورت ( ) نمایش داده می شود که سه نشان دهنده

پورتهای ورودی وخروجی یک مربع است دو نشان دهنده دو مربع یا دو حالت عمل پوش باتوم است یعنی مخرج را تعداد مربع مشخص می کند صورت را تعداد پورتهای موجود دریک مربع .شکل ظاهری یک پوش باتوم به صورت یک دکمه است که یک ورودی ویک خروجی دارد ودکمه حالت فنری دارد وتا زمانی که آن را فشار دهیم هوا از آن عبور می کند و با رها کردن آن مسیر هوا بسته می شود .گاهی اوقات برای راحتی کار پوش باتوم به صورت پدالی اعمال می کند که به جای دست از پا برای تحریک استفاده می کنند.

 

شیرهای memory (حافظه )این شیرها که هم می توانند 3/5 و 2/5 باشند تحریک آنها همواره بر نیروی باد نهفته است تا زما نی که باد پشت یکی از دو طرف شیر اعمال نشود شیر حالت خود را عوض نمی کند یعنی تعویض حالت شیر کاملا وابسته به نیروی باد سمت چپ وراست این شیر هاست در شیرهای در حالتی که باد از دو سمت شیر memory وارد شود این شیر در حالت وسط قرار گرفته و در این حالت معلق می شود ودر سیلندر ها پشت وجلوی پیستون بادی وجود نخواهد داشت وبه راحتی می توان آن پیستون را حرکت داد.

 

شیرهای سلونوئیدی: در این نوع شیرها که تحریکشان بوسیله برق انجام می شود نوعی از این شیرها با برق 12 ولت کار می کنند که در آن میدان مغناطیسی ایجاد شده بوسیله برق ورودی میله داخلی ورودی وخروجی هوا راجا بجا می کند این شیرها در سالن استفاده شده در جیگ وفیکسچرهای کاملاَ نپوماتیکی استفاده ندارد

 

انواع پورت ( port ) یاگذرگاه

انواع پورت به سه دسته تقسیم میشود 1- پورت قدرت که به سه صورت عددیک وحرف p ویا نماد نمایش داده می شود 2- پورت مصرف که به دو صورت عدد 2و4 یا حروف AوB نشان می دهند 3 –پورت اگزوز یا خروجی به دو عدد 5و3 نمایش می دهند وهمچنین حروف RوS یا با نماد نمایش می دهند عموماَ در پورت اگزوز یا خروجی اگر هوا مستقیماَ خارج شود صدای نا هنجاری ایجاد می کند به همین خاطر در پوشی در آنها قرار می دهند که از صدای زیاد جلوگیری کند دو نوع در پوش در پورت اگزوز قرار می دهند یک نوع آن طوری است داخل سوراخ آن مجموعه ساچمه های ریزی قرار دارد که هوا به آرامی از بین آنها عبور می کند و ا ز ایجاد صدا جلوگیری می کند در نوع دیگر یک زائده سه یا چهار سا نتی از هر اگزوز بست می خورد .

 

 

 

 

 

 


دانلود با لینک مستقیم


گزارش کارآموزی شرکت ماشین سازی اراک – گروه متالوژی

مهندسی متالوژی گرایش ذوب فلزات بررسی تأثیر افزودن مس بر ریزساختار و خواص مکانیکی چون دایکتل

اختصاصی از هایدی مهندسی متالوژی گرایش ذوب فلزات بررسی تأثیر افزودن مس بر ریزساختار و خواص مکانیکی چون دایکتل دانلود با لینک مستقیم و پر سرعت .

مهندسی متالوژی گرایش ذوب فلزات بررسی تأثیر افزودن مس بر ریزساختار و خواص مکانیکی چون دایکتل


مهندسی متالوژی گرایش ذوب فلزات بررسی تأثیر افزودن مس بر ریزساختار و خواص مکانیکی چون دایکتل

فرمت فایل : word(قابل ویرایش)تعداد صفحات89

 

 

فهرست
فصل اول: مقدمه
هدف آزمایش
1-1 چدن با گرافیت کروی
2-1 کروی سازی گرافیت
3-1 مشکلات افزودن منیزیم
4-1 اهمیت جوانه زایی
5-1 انجماد و مکانیزم کروی شدن گرافیت در چدن نشکن
فصل دوم: مروری بر منابع
1-2 تغییر حالت یوتکتوئید در چدنهای نشکن
1-1-2 تشکیل حلقه های فریت در اثر تجزیه آستنیت
2-1-2 تشکیل پرلیت در اثر تجزیه آستنیت
2-2 اثر مس بر سینیتیک تغییر حالت یوتکتوئید در چدنهای نشکن
2-3 اثر مس منحنی های سرد کردن
1-2-2 اثر مس بر منحنی های تغییر حالت برحسب زمان
2-2-2 اثر عناصر آلیاژی بر مکانیزمهای حاکم بر فرایند تغییر حالت یوتکتوئید در چدنهای نشکن
3-2 اثر مس بر ریز ساختار چدنهای نشکن
1-3-2 اثر مس بر ساختار زمینه چدنهای نشکن
2-3-2 اثر مس بر مشخصات گرافیتهای کروی
4-2 اثر مس بر خواص مکانیکی چدنهای نشکن
1-4-2 اثر مس بر سختی چدنهای نشکن
3-4-2 اثر مس بر مقاومت به ضربه چدنهای نشکن
فصل سوم: روش آزمایش
روش آزمایش
فصل چهارم: نتایج
1-4- نتایج حاصل از بررسی ساختار نمونه های مورد آزمایش
2-4- نتایج حاصل از بررسی اثر مس بر ریز ساختار نمونه های مورد آزمایش
3-4- نتایج حاصل از بررسی های اثر مس بر درصد کروی شدن
4-4- نتایج حاصل از بررسی اثر مس بر اندازه گرافیتهای کروی
5-4- نتایج حاصل از بررسی اثر مس بر تعداد گرافیتهای کروی در واحد سطح
6-4- نتایج حاصل از بررسی اثر مس بر ساختار زمینه
فصل پنجم: نتیجه گیری
1-5- اثر مس بر ریز ساختار نمونه های مورد آزمایش
1-1-5- اثر مس بر درصد کروی شدن
2-1-5- اثر بر تعداد گرافیتهای کروی در واحد سطح
3-1-5- اثر مس بر اندازه گرافیتهای کروی
4-1-5- اثر مس بر ساختار زمینه
2-5- اثر مس بر خواص مکانیکی نمونه های مورد آزمایش
1-2-5- اثر مس بر خواص کشتی
2-2-5- اثر مس بر انرژی ضربه
2-2-5- اثر مس بر سختی
3-5- نتیجه گیری
منابع و مآخذ
پیوستها

مقدمه:
هدف از انجام آزمایش:
در این آزمایش سعی شده که به این سؤال پاسخ داده شود که به علت افزایش سختی در اثر افزودن مس در چدنهای نشکن چیست. لذا لازم می باشد که مختصری در مورد چدنهای نشکن نکاتی یادآوری شود.
1-1 چدن با گرافیت کروی:
چدنهای نشکن یا چدنهای گرافیت کروی، خانواده ای از چدنها هستند و همانطور که از اسمشان پیداست شکل گرافیت در آنها کروی است. همین کروی بودن گرافیت ها، باعث افزایش استحکام و چقرمگی در مقایسه با چدنهای با گرافیت ورقه ای می گردد. اصولاً چدن نشکن با افزودن منیزیم Mg در مذاب، تولید می شود. برای کروی شدن گرافیت های قطعاتی که در قالبهای ماسه ای تولید می شوند مقدار 0.07 – 0.04% منیزیم باقیمانده در قطعات ریخته شده کافی می باشد. برای قطعاتی که در قالبهای فلزی تولید می شوند مقدار % 0.02 منیزیم باقیمانده کافی می باشد. همانطور که گفته شد برای کروی نمودن گرافیتها، به منیزیم احتیاج داریم که اگر میزان منیزیم از حد مورد نظر کمی کمتر باشد، گرافیتهای فشرده با استحکام و چقرمگی پائین تری بدست می آید. اصولاً چدن نشکن در مقایسه با چدن گرافیت ورقه ای، تمایل به تبرید بیشتری دارد و برای بدست آوردن ساختار عاری از کار بید مخصوصاً در مقاطع نازک، لازم است جوانه زایی با آلیاژ سیلیسیم si انجام شود.


دانلود با لینک مستقیم


مهندسی متالوژی گرایش ذوب فلزات بررسی تأثیر افزودن مس بر ریزساختار و خواص مکانیکی چون دایکتل

طرح توجیهی تولید قطعات صنعتی به روش متالوژی پودر

اختصاصی از هایدی طرح توجیهی تولید قطعات صنعتی به روش متالوژی پودر دانلود با لینک مستقیم و پر سرعت .
طرح توجیهی تولید قطعات صنعتی به روش متالوژی پودر
این طرح توجیهی شامل موارد زیر است :

معرفی محصول
مشخصات کلی محصول
شماره تعرفه گمرکی
شرایط واردات
استانداردهای ملی وجهانی
قیمت تولید داخلی و جهانی محصول
موارد مصرف و کاربرد
کالاهای جایگزین و تجزیه و تحلیل اثرات آن بر مصرف محصول
اهمیت استراتژیک کالا در دنیای امروز
کشورهای عمده تولید کننده و مصرف کننده محصول
وضعیت عرضه و تقاضا
بررسی ظرفیت بهره برداری و وضعیت طرحهای جدید و طرحهای توسعه و در دست اجرا و روند تولید از آغاز برنامه سوم تا کنون
بررسی روند واردات محصول از آغاز برنامه سوم تا نیمه اول سال
بررسی روند مصرف از آغاز برنامه
بررسی روند صادرات محصول از آغاز برنامه سوم و امکان توسعه آن
بررسی نیاز به محصول یا اولویت صادرات تا پایان برنامه چهارم
بررسی اجمالی تکنولوژی و روشهای تولید و تعیین نقاط قوت و ضعف تکنولوژی های مرسوم
در فرآیند تولید محصول
ماشین آلات
بررسی و تعیین حداقل ظرفیت اقتصادی شامل برآورد حجم سرمایه گذاری ثابت
محوطه سازی
ساختمان
ماشین آلات
تاسیسات
وسائط نقلیه
تجهیزات و وسائل اداری و خدماتی
هزینه های متفرقه و پیش بینی نشده
هزینه های قبل از بهره برداری
سرمایه در گردش
برآورد حقوق و دستمزد
برآورد آب, برق, سوخت و ارتباطات
هزینه های تعمیر و نگهداری و استهلاک
هزینه های متفرقه و پیش بینی نشده تولید

دانلود با لینک مستقیم


طرح توجیهی تولید قطعات صنعتی به روش متالوژی پودر

دانلود مقاله ترمودینامیک در متالوژی فیزیکی

اختصاصی از هایدی دانلود مقاله ترمودینامیک در متالوژی فیزیکی دانلود با لینک مستقیم و پر سرعت .

 

مقدمه :
اساسی ترین کاربرد ترمودینامیک در متالوژی فیزیکی پیش بینی حالت تعادل برای یک آلیاژ است .
در بررسی های مربوط به دگرگونی های فازی ما همیشه با تغییر سیستم به سمت تعادل روبه رو هستیم. بنابراین ترمودینامیک به صورت یک ابزار بسیار سودمند می تواند عمل کند. باید توجه داشت که ترمودینامیک به تنهایی نمی تواند سرعت رسیدن به حالت تعادل را تعیین کند .
1-تعادل :
یک فاز به عنوان بخشی از یک سیستم تعریف می شود که دارای خصوصیات و ترکیب شیمیایی یکنواخت و همگنی بوده و از نظر فیزیکی از دیگر بخشهای سیستم جداشدنی است . اجزای تشکیل دهنده یک سیستم خاص عناصر مختلف یا ترکیب های شیمیایی است که سیستم را بوجود می آورد و ترکیب شیمیایی یک فاز یا یک سیستم را می توان با مشخص کردن مقدار نسبی هر جزء تشکیل دهنده تعیین کرد .
به طور کلی دلیل رخداد یک دگرگونی این است که حالت اولیه یک آلیاژ نسبت به حالت نهایی ناپایدارتر است اما پایداری یک فاز چگونه تعیین می شود ؟ این پرسش به وسیله ترمودینامیک پاسخ داده می شود . برای دگرگونی هایی که در دما و فشار ثابت رخ می دهد پایداری نسبی یک سیستم از انرژی آزاد گیبس G آن سیستم مشخص می شود .
انرژی آزاد گیبس یک سیستم به صورت زیر تعریف می شود :
( 1-1 ) G=H-TS
که H آنتالپی T دمای مطلق و S آنتروپی سیستم است . آنتالپی میزان گنجایش حرارتی سیستم مورد نظر است و به وسیله رابطه زیر بیان می شود.
( 2-1 ) H=E+PV
که E انرژی درونی سیستم P فشار و V حجم سیستم است . انرژی درونی مجموع انرژی های پتانسیل و جنبشی اتم های درون یک سیستم است. در جامدات انرژی جنبشی تنها ناشی از حرکت ارتعاشی اتم ها است در حالی که در مایعات و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول ها و گاز ها انرژی جنبشی افزون بر حرکت ارتعاشی اتم ها انرژی انتقالی و انرژی دورانی اتم ها و مولکول های داخل یک مایع یا گاز را نیز در برمیگیرد . انرژی پتانسیل نیز بر اثر اندرکنش ها یا پیوند بین اتم های درون یک سیستم به وجود می آید . هنگامی که یک دگرگونی یا واکنش رخ می دهد حرارت جذب شده یا حرارت آزاد شده به تغییرات در انرژی درونی سیستم ارتباط پیدا می کند اما تغییرات حرارت تابعی از تغییر حجم سیستم نیز بوده و عبارت PV نمایانگر این موضوع است بنابراین در فشار ثابت تغییرات H نشانگر حرارت جذب شده یا آزاد شده است.
هنگامی که یک فاز متراکم (جامد یا مایع) را بررسی می کنیم و عبارت PV در مقایسه با E مقدار بسیار کوچکی است که آن را نادیده می گیرند و .
عبارت دیگری که در رابطه مربوط به G پدیدار می شود آنتروپی ( S ) بوده که بیانگر میزان بی نظمی سیستم است .
هنگامی یک سیستم را در ( حالت ) تعادل می دانند که در پایدارترین حالت خود قرار گرفته باشد یعنی با گذشت زمان هیچ تغییری در سیستم ایجاد نشود . یک نتیجه مهم از قوانین ترمودینامیک کلاسیک این است که در دما و فشار ثابت یک سیستم بسته ( یعنی سیستمی که جرم و ترکیب شیمیایی آن ثابت است ) هنگامی در تعادل پایدار قرار دارد که انرژی آزاد گیپس آن کمترین مقدار ممکن را داشته باشد یا به شکل ریاضی :
( 3-1 ) dG=O
با توجه به تعریف G ( معادله 1-1 ) ملاحظه می شود که پایدارترین حالت هنگامی رخ می دهد که سیستم کمترین آنتالپی و بیشترین آنتروپی را دارا باشد . بنابراین در دماهای پایین فازهای جامد پایدارتر است چون قویترین اتصال بین اتمی را داشته بنابراین کمترین انرژی درونی ( آنتالپی ) را دارد . در دماهای بالا چون عبارت TS - عبارت غالب است بنابراین فازهایی با بی نظمی بیشتر همچون مایعات و گازها که اتم های آنها به آسانی حرکت کرده و جابه جا می شود پایدارتر است .
تعادل که به وسیله معادله 3-1 تعریف می شود را می توان به صورت ترسیمی نیز نشان داد . اگر انرژی آزاد تمام حالت های فرضی ممکن یک سیستم را محاسبه کنیم آرایش پایدار حالتی خواهد بود که انرژی آزاد آن کمترین مقدار است . این موضوع در شکل یک نشان داده شده است و با این فرض که انرژی مربوط به هر یک از آرایش های اتمی مختلف به صورت نقطه ای روی منحنی موجود قرار می گیرد آرایش یا نظم A نشانگر وجود تعادل پایدار است . در این نقطه تغییرات کوچک در ترتیب اتم ها با یک تقریب مرتبه اول تغییری در G ایجاد نمی کند یعنی معادله 3-1 برقرار است . اگر چه همیشه آرایش ها و نظم های دیگری مانند B وجود دارد که در آن نقاط انرژی آزاد به طور موضعی کمینه است و معادله 3-1 را نیز تصدیق می کند ولی کمترین مقدار ممکن G را ندارد . چنین حالت ها یا آرایش هایی را به منظور جدا کردن از حالت پایدار حالت تعادل نیمه پایدار می نامند . حالت های میانی که را حالت ناپایدار می نامند و فقط در کارهای عملی و به طور لحظه ای هنگام انتقال از یک حالت پایدار به حالت دیگر به وجود می آید . اگر بر اثر نوسان های دمایی اتم ها یک نظم یا آرایش حالت میانی بیاید این نظم بسرعت تغییر می کند و اتم ها دوباره نظم یکی از حالت های دارای انرژی آزاد کمینه را به خود می گیرند . اگر بواسطه تغییری در دما یا فشار برای مثال یک سیستم از حالت پایدار به حالت نیمه پایدار حرکت کند با گذشت زمان سیستم به حالت تعادل پایدار جدیدی تغییر حالت می دهد .

 

 

 

 

 

 

 

شکل یک : تغییرات شماتیک انرژی آزاد گیبس نسبت به نظم و وضعیت اتمها . آرایش یا نظم A کمترین انرژی آزاد را دارد . بنابراین هنگامی که سیستم در تعادل پایدار است دارای چنین نظمی خواهد بود . آرایش B یک تعادل نیمه پایدار است .
بر اساس قوانین ترمودینامیک هر دگرگونی که به کاهش انرژی آزاد سیستم می انجامد امکان پذیر است . بنابراین یک معیار یا ملاک لازم برای هر

دگرگونی فازی رابطه زیر است :
( 4-1 )
و به ترتیب انرژی های آزاد حالت های اولیه و نهایی سیستم است . برای یک دگرگونی لازم نیست که یکباره و به طور مستقیم به حالت تعادل پایدار نهایی برسد بلکه دگرگونی می تواند در چندین مرحله و گذر از یک سری حالت های نیمه پایدار میانی به حالت پایدار نهایی برسد .
2-سیستم های یک جزیی :
در این قسمت تغییرات فازی را بررسی می کنیم که در یک سیستم یک جزئی در اثر تغییر دما و در یک فشار ثابت (برای مثال یک اتمسفر) ایجاد می شود. سیستمی که از یک جزء تشکیل شده می تواند یک عنصر خالص یا یک نوع مولکول باشد که در محدوده دمایی مورد نظر تجزیه نمی شود. به منظور تعیین فازهای پایدار و یا دماهای مختلف فازهایی که با یکدیگر در تعادل است باید تغییرات G با دما (T) را بتوان محاسبه کرد .
1-2- انرژی گیبس به صورت تابعی از دما
گرمای ویژه بیشتر مواد بسادگی قابل اندازه گیری و به آسانی در دسترس است و معمولا مانند شکل دو ( الف ) با دما تغییر می کند . گرمای ویژه مقدار حرارتی است ( بر حسب ژول ) که باید به ماده داده شود تا دمای آن یک درجه کلوین افزایش یابد در فشار ثابت این کمیت به وسیله بیان می شود و برابر است با :
( 1-2 )
بنابراین با آگاهی از تغییرات با دما ( T ) می توان تغییرات H با T را محاسبه کرد . در بررسی های مربوط به دگرگونی فازها یا واکنش های شیمیایی فقط تغییرات توابع ترمودینامیکی مورد نیاز است . در نتیجه H را می توان با گزینش مرجعی نسبت به آن مرجع اندازه گیری کرد که معمولا نقطع مرجع را پایدارترین حالت یک عنصر خالص در دمای K 298 در نظر می گیرند و به این نقطه آنتالپی صفر را نسبت می دهند . تغییرات H با دمای T با انتگرال گیری از رابطه ( 1-2 ) به دست می آید یعنی :
( 2-2 )
تغییرات H با T به طور ترسیمی در شکل دو ب نشان داده شده است شیب منحنی T - H همان است . تغییرات آنتروپی با دما نیز از به دست می آید با توجه به ترمودینامیک کلاسیک داریم :
( 3-2 )
اگر آنتروپی در صفر مطلق را صفر در نظر بگیریم با انتگرال گیری از رابطه 3-2 داریم :
( 4-2 )
تغییرات S با دما در شکل دو پ نشان داده شده است .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

شکل دو الف) تغییرات با دما ب) تغییرات آنتالپی (H) با دمای مطلق برای یک فلز خالص
پ) تغییرات آنتروپی (S) با دمای مطلق .
سرانجام تغییرات G با دما از ترکیب شکل های دو الف و ب براساس معادله 1-1 در شکل سه به دست می آید . هنگامی که دما و فشار با هم تغییر می کند انرژی آزاد گیبس براساس نتایج حاصل از ترمودینامیک کلاسیک به دست می آید . برای یک سیستم با جرم و ترکیب شیمیایی ثابت داریم :
( 5-2 )
در فشار ثابت و
( 6-2 )
براساس این رابطه در فشار ثابت دما G با سرعت –S کاهش می یابد . موقعیت نسبی منحنی های انرژی آزاد فازهای جامد و مایع در شکل چهار نشان داده شده است . در تمام دماها فاز مایع دارای یک آنتالپی ( انرژی درونی ) بزرگتر نسبت به فاز جامد است بنابراین در دماهای پایین . اما فاز مایع دارای آنتروپی بزرگتری نسبت به فاز جامد است و انرژی آزاد گیبس مایع با افزایش دما بسیار سریع تر از فاز جامد کاهش می یابد بنابراین در دماهای پایین تر از فاز جامد کمترین انرژی آزاد را دارد و بنابراین فاز پایدار فاز جامد است در حالی که در دمای بالای فاز مایع فاز پایدار بوده و حالت تعادل سیستم مایع است . در دمای هر دو فاز G یکسانی دارند و هر دو فاز مایع و جامد می توانند در تعادل با یکدیگر قرار گیرند . بنابراین دمای تعادلی ذوب در فشار مورد نظر است .
اگر یک جزء از دمای صفر مطلق آغاز به گرم شدن کند حرارت سبب افزایش آنتالپی با سرعتی در امتداد خط ab در شکل چهار می شود که (جامد) آن را تعیین می کند . در حالی که انرژی آزاد در امتداد خط ae کاهش خواهد یافت. در دمای حرارت اعمال شده به سیستم به افزایش دما نمی انجامد بلکه به صورت گرمای نهان ذوب (L) صرف تبدیل جامد به مایع می شود (خط bc در شکل چهار). توجه کنید که در دمای به نظر می رسد که گرمای ویژه بی نهایت باشد چون حرارت افزوده شده تغییری در دمای سیستم ایجاد نمی کند (بنابراین با توجه به فرمول (1-2) از آنجا که تغییرات دما صفر بوده ولی تغییرات آنتالپی غیر صفر است بنابراین به سمت بی نهایت میل می کند) .
هنگامی که تمام جامد به مایع تبدیل شد آنتالپی سیستم از خط cd پیروی می کند درحالی که انرژی آزاد گیبس در امتداد خط ef کاهش می یابد . در دماهایی بالاتر از آنچه که در شکل 4-1 نشان داده شده است انرژی آزاد فاز گازی (در فشار یک اتمسفر) کمتر از فاز مایع می شود در نتیجه فاز مایع به گاز تبدیل می شود. اگر فاز جامد بتواند ساختارهای بلوری متفاوتی بخود بگیرد (چند شکلی یا چند ریختی) منحنی های انرژی آزاد هر کدام از این ساختارها را می توان جداگانه رسم کرد و محل تقاطع این منحنی ها با یکدیگر دماهایی را نشان می دهند که در واقع تعادلی برای دگرگونی های چند ریختی است.

 

 

 

 

 

 

 


شکل سه: تغییرات آنتالپی (H) و انرژی آزاد (G) با دما برای فازهای جامد و مایع یک فلز خالص . L گرمای نهان ذوب و دمای تعادلی ذوب می باشد.

2-2 اثرهای فشار :
تاکنون دماهای تعادل را در یک فشار خاص (برای مثال یک اتمسفر) مورد بحث قرار دادیم. در فشارهای دیگر دمای تعادل تغییر خواهد کرد . برای مثال شکل 5 تأثیر فشار را بر دماهای تعادلی آهن خالص نشان می دهد . افزایش فشار کاهش دمای تعادلی را سبب می شود و دمای تعادلی ذوب را افزایش می دهد . در فشارهای بسیار بالا با ساختارهای hcp پایدار می شود . دلیل این تغییرات از معادله ( 5-2 ) به دست می آید . در دمای ثابت انرژی آزاد یک فاز با افزایش فشار افزایش می یابد به گونه ای که :
( 7-2 )
در حالتی که دو فاز با حجم های مولی متفاوت با یکدیگر در تعادل باشند در یک دمای خاص با افزایش فشار انرژی آزاد آنها به یک اندازه افزایش نمی یابد در نتیجه حالت تعادل با تغییر فشار از بین می رود. تنها راه برای اینکه با تغییر فشار حالت تعادل باقی بماند تغییر همزمان دمای تعادل است . اگر دو فاز در حال و باشند با بکار بردن معادله ( 5-2 ) برای یک مول از هر دو فاز داریم :
( 8-2 )
اگر و در تعادل با یکدیگر باشند بنابراین و
( 9-2 )
بنابراین اگر فشار به اندازه dp افزایش یابد این معادله مقدار تغییر دمای لازم (dT) برای ثبات حالت تعادل بین دو فاز را به ما می دهد . معادله را می توان به شکل ساده تری نیز نوشت از معادله 1-1 داریم :

بنابراین با توجه به اینکه و به همین ترتیب برای دیگر پارامترها داریم :

چون در حالت تعادل و پس :

در نتیجه معادله 9-2 به صورت زیر درمی آید :
(10-2)
این معادله را معادله کلوزیوس – کلاپیرون می نامند . چون آهن دارای حجم مولی کوچکتری نسبت به آهن است بنابراین در حالی که ( به همان دلیل که یک مایع دارای آنتالپی بزرگتری نسبت به یک جامد است ) بنابراین مقداری است منفی یعنی اینکه افزایش فشار دمای تعادلی دگرگونی را کاهش می دهد . از سوی دیگر دمای تعادل با افزایش فشار افزایش می یابد زیرا حجم مولی فاز مایع بیشتر از فاز است . سرانجام مشاهده می شود که افزایش فشار گستره ناحیه ای را افزایش می دهد که فاز در آن پایدار است ( یعنی گستره ی ناحیه ای که فاز با حجم مولی کوچکتر در آن قرار می گیرد ) . ( ناحیه در شکل 5 ) .

 

 

 

 

 

 

 

 

 

شکل 5 تأثیر فشار روی دیاگرام فاز تعادلی آهن خالص
3-محلول های دوتایی :
در سیستمهای دارای یک جزء ترکیب شیمیایی تمامی فازها یکسان بوده و برای بررسی و تعیین حالت تعادل متغیرهای موجود دما و فشار سیستم است. در آلیاژها ترکیب شیمیایی نیز متغییر است در نتیجه برای درک تغییرات فازی افزون بر آگاهی از تغییرات انرژی آزاد گیبس یک فاز برحسب دما و فشار باید تغییرات آن را برحسب ترکیب شیمیایی نیز بدانیم.

 

1-3- انرژی آزاد گیبس محلول های دوتایی
انرژی آزاد گیبس یک محلول دوتایی دربردارنده اتم های A و B را می توان به روش زیرا از انرِژی های آزاد مواد خالص A و B محاسبه کرد . فرض کنید که A و B خالص دارای ساختار بلوری یکسانی است و می توان به هر نسبتی با یکدیگر بیامیزد و یک محلول جامد با ساختار بلوری همانند را ایجاد کند . فرض کنید که یک مول از محلول جامد همگن از آمیختن مول از A با مول از Bبا یکدیگر ساخته شده باشد بنابراین برای یک مول از محلول می توان نوشت :
( 1-3 )
و به ترتیب کسر مولی A و B در آلیاژ است. به منظور تعیین انرژی آزاد آلیاژ با توجه به شکل شش عمل آمیخته شدن می تواند در دو گام انجام گیرد. آنها عبارتند از:

 

 

 

 

 

 

 

 

 


شکل پنج: انرژی آزاد آمیخته شدن
1-کنار یکدیگر آوردن مول از A خالص و مول از B خالص
2-اجازه به اتم های A و B به منظور آمیخته شدن با یکدیگر برای ایجاد یک محلول جامد همگن.
پس از گام یک، انرژی آزاد سیستم برابر خواهد بود با:
(2-3)
و به ترتیب انرژی آزاد مولی A خالص و B خالص در دما و فشار آزمایش بالا است. می تواند همانند شکل هفت به طور مناسبی روی یک نمودار انرژی آزاد مولی مشخص شود که انرژی آزاد مولی به صورت تابعی از یا رسم شده است. برای هر آلیاژی با ترکیب شیمیایی خاص خود روی یک خط راست بین و قرار گیرد.

 

 

 

 

 

 

 

شکل هفت: تغییرات (انرژی آزاد پیش از آمیخته شده) با ترکیب شیمیایی آلیاژ ( یا )
انرژی آزاد سیستم در حین آمیخته شده اتم های A و B ثابت باقی نمی ماند و پس از گام 2 انرژی آزاد محلول جامد به صورت زیر بیان می شود.
(3-3)
تغییر در انرژی آزاد گیبس ناشی از آمیخته شده است. چون

بنابراین با جایگزین کردن در معادلعه (3-3) خواهیم داشت:

و

در نتیجه:
(4-3)
حرارت جذب شده یا آزاد در طول گام 2 است، یعنی حرارت محلول شدن است و در صورت چشمپوشی از تغییرات حجم در طول فرآیند، تنها تغییر در انرژی درونی (E) پیش و پس از آمیخته شدن را نشان می دهد تفاوت در آنتروپی بین حالت های آمیخته شده و پیش از آمیخته شدن است.
2-3-محلول ایده آل:
ساده ترین نوع آمیختن که نخست بررسی می شود، هنگامی است که ، در این حالت به محلول حاصل، محلول ایده آل گفته می شود و تغییر در انرژی آزاد به هنگام آمیختن فقط ناشی از تغییر آنتروپی سیستم است، یعنی:
(5-3)
در ترمودینامیک آماری، آنتروپی به طور کلی به وسیله معادله بولتزمن به بی نظمی مرتبط می شود، یعنی
(6-3)
K ثابت بولتزمن و معیار بی نظمی است، آنتروپی یک محلول جامد دربردارنده دو عبارت است (دو عامل در به وجود آوردن آنتروپی همیاری دارد) یکی عبارت حرارتی و دیگری عبارت مربوط به شیوه آرایش اتم ها .
در مورد آنتروپی حرارتی تعداد راههایی است که انرژی حرارتی جامد را می توان در میان اتم ها تقسیم کرد، یعنی تعداد کل راه هایی که ارتعاشات درون جامد می تواند انجام گیرد. در محلول ها، بی نظمی اضافی به دلیل راههای مختلفی است که اتم ها می تواند مرتب شود. این موضوع اضافی را به ما می دهد که مربوط به آن نشانگر تعداد حالت های جدانشدنی و قابل تشخیصی است که انم ها می تواند در محلول داشته باشد (یعنی تعداد حالت های غیر تکراری را تعیین می کند که اتم ها می تواند چیده شود*).
اگر هیچگونه تغییر حجم یا تغییر حرارتی در طول آمیختن وجود نداشته باشد تنها عامل موثر در تغییر در آنتروپی مربوط به شیوه آرایش اتم ها است. پیش از آمیختن، اتم های A و B به طور جداگانه از یکدیگر قرار گرفته است. بنابراین تنها یک راه قابل جدا شدن برای آرایش اتم ها وجود دارد. در نتیجه و از این رو .
فرض کنید که آمیخته A و B، یک محلول جامد تشکیل دهد و احتمال اینکه تمام حالت های آرایش اتم های A و B یکسان باشد در این صورت، تعداد راههای جدایی پذیر آرایش اتم ها در موقعیت اتمی برابر خواهد بود با:
(7-3)
تعداد اتم های A و تعداد اتم های B است. چون ما بررسی های خود را روی یک مدل از محلول انجام می دهیم، یعنی اتم (عدد آوگادرو)

و

با جایگزین کردن روابط به دست آمده در رابطه 6-3 و 7-3 و بکار بردن تقریب استرلینگ و رابطه (R ثابت جهانی گازها) داریم:
(8-3)
باید توجه داشت که چون و کوچک تر از یک بوده، مثبت است.
یعنی هنگام آمیختن، آنتروپی افزایش می یابد. انرژی آزاد آمیختن از معادله 5-3 به فرم زیر به دست می آید:
(9-3)
شکل هشت را به صورت تابعی از دما و ترکیب شیمیایی نشان می دهد.

 

 

 

 

 

 

 

شکل هفت: انرژی آزاد آمیختن برای یک محلول ایده آل.
3-3-پتانسیل شیمیایی
هنگامی که G به عنوان تابعی از و شناخته می شود می توان و را با امتداد دادن خط مماس بر منحنی B تا دو سوی نمودار انرژی آزاد مولی همانند شکل نه به دست آورد.

 

 

 

 

 

 

 


شکل هشت: رابطه بین منحنی انرژی آزاد برای یک محلول و پتانسیل شیمیایی اجزا
از شکل نه کاملاً مشخص است که و به طور بسیار منظمی با ترکیب شیمیایی فاز تغییر می کنند.
4-3- محلول های باقاعده:
دوباره به مدل محلول جامد باز می گردیم، تا کنون فرض بر این بود که ، ولی در عمل این مورد در حالت های استثنایی دیده می شود و معمولاً عمل آمیختن، حرارت زا یا حرارت گیر است. مدل ساده ای که تا کنون برای یک محلول ایده ال بکار می بردیم، با استفاده از آنچه که رهیافتی شیمیایی مانند نامیده می شود، می تواند عبارت را نیز دربرگیرد. در روش شیمیایی مانند فرض می شود که حرارت آمیختن فقط ناشی از انرژی پیوند بین اتم های مجاور است. شرط اعتبار این فرض، این است که حجم های A و B خالص برابر باشد و در حین آمیختن تغییر نکند به گونه ای که فاصله بین اتم ها و انرژی های پیوند مستقل از ترکیب شیمیایی باشد.
ساختار یک محلول جامد دوتایی به طور شماتیک در شکل 10 نشان داده شده است. در این ساختار سه نوع پیوند وجود دارد.
1-پیوندهای A-A با انرژی
2-پیوندهای B-B با انرژی
3-پیوندهای A-B با انرژی
با نسبت دادن انرژی صفر به حالتی که اتم های در فاصله نسبتاً زیادی از یکدیگر قرار گرفته است و هیچگونه تاثیری روی یکدیگر ندراد، انرژی های و و مقادیری منفی خواهد بود و با افزایش قدرت پیوندها، انرژی ها منفی تر می شود. انرژی داخلی محلول E به تعداد پیوندهای موجود از هر نوع یعنی و و بستگی دارد، به طوری که:

پیش از آمیختن A و B خالص به ترتیب فقط پیوندهای A-A و B-B وجود دالرد و با توجه به رابطه بین و و ، در محلول می توان نشان داد که تغییر در انرژی داخلی هنگام آمیختن برابر خواهد بود با:
(10-3)
که
(11-3)

 

 

 

 

 

 

 

 

 

 

 

 

 

شکل نه: انواع مختلف پیوند بین اتمی در یک محلول جامد
یعنی اختلاف بین انرژی پیوند A-B و میانگین انرژی پیوندهای A-A و B-B است. اگر ، بنابراین پس محلول، محلول ایده آل است. در این حالت اتم ها به طور کاملاً تصادفی قرار گرفته است و نظم خاصی ندارد و آنتروپی آمیختن از رابطه (8-3) به دست می آید. در چنین محلولی می توان نشان داد:
(12-3)
که عدد آوگادرو و Z تعداد پیوندها به ازای یک اتم است. اگر ، اتم های درون محلول ترجیح می دهد که اتم های نوع دیگر آنها را دربرگیرد. در نتیجه افزایش می یابد، در حالی که اگر ، کمتر از مقدار برای یک محلول با نظام تصادفی است. به هر حال پیش بینی می شود که اختلاف زیادی از صفر نداشته باشد و معادله (12-3) در چنین حالتی هنوز یک تقریب مناسب است. پس:
(13-3)
که
(14-3)
محلول واقعی که به خوبی از معادله (13-3) پیروی می کند، محلول های با قاعده نامیده می شود. تغییرات با ترکیب شیمیایی، سهمی شمل است و شکل 11 حالتی را که نشان می دهد مماس بر منحنی در نقاط و مقدار را نشان می دهد. تغییرات انرژی آزاد هنگام آمیختن یک محلول با قاعده به وسیله گروابط (4-3)، (8-3) و (13-3) به صورت زیر بیان می شود.
15-3

 

 

 

شکل ده: تغییرات با ترکیب شیمیایی برای یک محلول با قاعده
این رابطه برای مقادیر مختلف و دما در شکل 12 نشان داده شده است. برای محلول های حرارت زا و آمیختن به کاهش انرژی آزاد در تمامی دماها منجر می شود (شکل 12، الف و ب). هنگامی که ، رفتار محلول پیچیده تر است. در دماهای بالا، به ازای تمام غلظت های بزرگتر از است . منحنی انرژی آزاد در تمام نقاط دارای شعاع انحنای مثبت است (شکل 12، پ). از سوی دیگر در دماهای پایین کوچکتر از می شود و در نواحی میانی دارای یک انحنای منفی خواهد بود (شکل 12، ت)

 

 

 

 

 

 

 

 

 

 

 


شکل یازده: تاثیر و T روی

5-3-محلول واقعی:
مدل پیشین اگرچه اثرهای آنتروپی ساختاری و ترتیب اتم ها و همچنین پیوند بین اتم ها را روی انرژی آزاد یک محلول دوتایی توصیف می کند، ولی کاربرد عملی این مدل نسبتاً محدود است. این مدل سبب ساده شدن بیش از حد واقعیت می شود و در نتیجه نمی تواند ارتباط بین با ترکیب شیمیایی و دما را به درستی پیش گویی کند.
همانگونه که تا کنون اشاره شد در آلیاژهایی که آنتالپی آمیختن صفر نباشد این فرض به دور از واقعیت بوده که نظم و ترتیب تصادفی اتم ها ترتیب یا پیادارترین ترتیب اتم ها است و مقدار محاسبه شده کمترین مقدار انرژی را ارائه نمی دهد. نظم و ترتیب واقعی اتم ها حالتی خواهد بود بین کمترین درونی و بیشترین آنتروپی یا بی نظمی به گونه ای که به کمینه انرژی آزاد برسیم. در سیستم هایی با به همراه افزایش تعداد پیوندهای A-B یعنی با منظم شدن اتم ها همانند شکل 13، الف انرژی سیستم کاهش می یابد. اگر انرژی درونی با افزاشی تعداد پیوندهای A-A و B-B، یعنی تجمع اتم های همانند در نواحی سرشار از A و سرشار از B، کاهش می یابد (شکل 3، ب). در هر صورت با افزایش دما، میزان نظم یا خوشه ای بودن کاهش می یابد، چون اهمیت آنتروپی افزایش می یابد.
در سیستم هایی که اندازه اتم ها متفاوت است، روش شیمیایی مانند تغییر در انرژی درونی هنگام آمیختن را کمتر از آنچه هست برآورد خواهد کرد، چون تأثیر میدان های کرنش کشسان، منشا یک عبارت انرژی کرنشی در را مد نظر قرار نمی دهند. هنگامی که اختلاف اندازه ها زیاد است، این اثر می تواند بر عبارت شیمیایی چیره شود.

 

 

 


شکل 13: نمایشی شماتیک از محلول های جامد (الف) جانشین منظم شده (ب) خوشه ای شدن پ) بین نشین تصادفی و نامنظم
هنگامی که اختلاف اندازه ها بین اتم ها بسیار زیاد است، محلول های جامد بین نشین از نظر انرژی مناسب تر است (شکل 13، پ) و مدل های جدید ریاضی برای توصیف این محلول ها مورد نیاز است.
در سیستم هایی با پیوند شیمیایی قوی بین اتم ها، گرایش زیادی برای تشکیل فازهای بین فلزی وجود دارد. ترکیبات بین فلزی متفاوت از محلول هایی است که از اجزای خالص به وجود آمده است، چون ساختار بلوری متفاوتی دارد و ممکن است بسیار منظم شده باشد.

6-3-فازهای منظم شده:
اگر اتم های درون یک محلول جامدنشین به طور کاملاً تصادفی مرتب شده باشد تمام موقعیت های اتمی معادل یکدیگر است و احتمال اینکه یک موقعیت اتمی خاص در شبکه را اتم A اشغال کرده باشد برابر با درصد اتم های A در محلول است و همچنین برای اتم های B و خواهد بود. در چنین محلول هایی ، یعنی تعداد پیوندهای A-B از معادله (12-3) به دست می آید. اگر وتعداد پیوندهای A-B بزرگ تر از مقدار به دست آمده از معادله (12-3) باشد، گفته می شود که محلول دارای نظم در فواصل کوتاه است. با تعریف یک پارامتر (S)SRO می توان میزان منظم بودن سیستم را درجه بندی کرد به گونه ای:

که بیشینه تعداد پیوندهای ممکن تعداد پیوندهای یک محلول تصادفی است. شمکل 14 اختلاف بین یک محلول تصادفی یا نامنظم و یک محلول منظم شده در فواصل کوتاه را مشخص می کند.
در محلول هایی که ترکیب شیمیایی آنها تقریباً نسبت ساده (A:B) دارد، نوع دیگری از نظم بین اتم ها وجود دارد که در شکل 14 الف نشان داده شده است. این نوع نظم را نظم در فواصل طولانی می نامند در چنین حالتی موقعیت های اتمی معادل یکدیگر نیست و برخی موقعیتی ها به اتم های A (موقعیت های A) و برخی به اتم های B (موقعیت های B) مربوط است. چنین محلولی به عنوان یک فاز متفاوت (منظم شده) جدا از محلول تصادفی یا تقریباً تصادفی یا نامنظم درنظر گرفته می شود.
به عنوان مثالی ویژه، آلیاژ Cu-Au را در نظر بگیرید. Cu و Au هر دو دارای ساختار fcc است و کاملاً در یکدیگر حل می شود. در دماهای بالا، اتم های , Au می تواند در هر موقعیتی قرار گیرد و همانند شکل 15 الف شبکه به صورت یک ساختار fcc است که اتم ها به طور تصادفی در هر نقطه ای قرار گرفته است. در دماهای پایین محلول هایی با ، یعنی آمیخته ای 50/50 از Cu/Au، ساختاری منظم شده را به وجود می آورد که اتم های Cu، Au در لایه های متوالی همانند شکبل 15، ب مرتب شده است. در این ساختار، موقعیت های اتمی معادل یکدیگر نیست و شبکه به عنوان یک فراشبکه از CuAu توصیف می شود. در آلیاژهایی با ترکیب شیمیایی Cu Au، نوعید دیگر از فراشبکه به وجود می آید که در شکل 15 پ نشان داده شده است.
آنتروپی آمیختن ساختارهایی با نظم در فواصل طولانی، بی نهایت کوچک است و با افزایش دما، میزان نظم کاهش می یابد تا اینکه در بالاتر از یک دمای بحرانی نظم در فواصل طولانی به طور کلی از بین می رود. هنگامی که ترکیب شیمیایی دقیقاً ترکیب لازم برای ایجاد یک فراشبکه است

 

 

 

 

 

شکل چهارده (الف) محلول نامنظم A-B با مجموعد 100 اتم و ،
(ب) هماند آلیاژ با نظم در فواصل کوتاه ،
دمای بحرانی بیشترین مقدار خود را دارد. در مواردی که ترکیب شیمیایی از حالت ایده آل برای فراشبکه اندکی انحراف دارد، یعنی برخی از موقعیت های اتمی خالی است با اینکه برخی از اتم ها در موقعیت های نادرستی قرار گرفته است نظم در فواصل طولانی بوجود می آید، ولی دمای بحرانی پایین تر است و با افزایش دما آلیاژ در دماهای پایین تری نظم خود را از دست می دهد. شکل 16 را ببینید.

 

 

 

شکل 15: ساختار جانشین منظم شده در سیستم Cu-Au
(الف): ساختار نامنظم در دمای بالا
(ب): فراشبکه CuAu
(پ): فراشبکه Cu3Au

 

 

 

 

 

 

 

شکل 16: بخشی از نمودار فازی مس، طلا که نشان دهنده نواحی پایداری فراشبکه Cu3Au و CuAu است.
در شکل 17 مرسوم ترین شبکه های منظم شده در سیستم های دیگر نشان داده است، در این شکل همراه با هر ساختار نشانه ساختاری مربوط و مثال هایی از آلیاژهایی با آن ساختار ارائه شده است. در آخر بحث باید توجه داشت که دمای بحرانی برای از بین رفتن نظم در فواصل طولانی با افزایش یا افزایش می یابد و در برخی سیستم ها فاز منظم شده تا دمای ذوب پایدار باقی می ماند.

 


: (الف)
: (ب)
: (پ)
: (ت)
: (ث)
7-3-فاز میانی:
در اغلب موارد پس از عمل آمیختن اتم ها برای رسیدن به حداقل انرژی آزاد، اتم ها آرایش و ساختاری را به خود می گیرد که از ساختار مولفه ها و اجزای تشکیل دهنده در حالت خالص خود متفاوت است. در چنین مواردی ساختار جدید را در اصطلاح یک فاز میانی می نامند.
فازهای میانی اغلب در یک نسبت اتمی خاص به وجود می آید و در نتیجه به کیمنه شدن انرژی آزاد بزرگ تر می شود و منحنی G یک شکل U مانند را به خود می گیرد شکل 18 را ببینید. گستره یا از ترکیب شیمیایی که منحنی انرژی آزاد در آن با معنی است. به ساختار فاز و نوع پیوندهای بین اتمی (فلزی، یونی یا کووالانت) بستگی دارد. هنگامی که یک انحراف کوچک غلظت به افزایش سریع G می انجامد، فاز ترجیح می دهد به صورت ترکیب بین فلزی باشد و معمولاً با نسبت عنصری مشخص است، یعنی یک فرمول دارد که m و n اعداد صحیح است (شکل 18 الف). در ساختارهای دیگر تغییرات در ترکیب شیمیایی می تواند با قرارگرفتن اتمها در موقعیت نادرست یا خالی ماندن برخی موقعیت های اتمی تحمل شود.

 

 

 

 

 

 

 


شکل هجده. 18: منحنی انرژی آزاد برای فازهای میانی (الف) برای یک ترکیب بین فلزی با گستره پایداری باریک (ب) برای یک فاز میانی با گستره ی پایداری گسترده.
در نتیجه در چنین مواردی, انحنای منحنی G کمتر خواهد بود (شکل 18، ب)
در برخی از فازهای میانی می تواند دگرگونی های بی نظمی به نظم صورت گیرد، یعین اینکه یک ترکیب تقریباً نامنظم که در دماهای بالا پایدار است, در دماهای پایین تر از دمای بحرانی به ساختاری منظم و از نظر انرژی تبدیل می شود. چنین دگرگونی برای مثال در فاز سیستم Cu-Zn رخ می دهد.
ساختار فاز میانی به وسیله سه عوامل اساسی تعیین می شود: اندازه نسبی اتم, ظرفیت اتم و الکترونگاتیوی. هنگامی که اختلاف شعاع اتمی اجزاء نزدیک به ضریب 6/1-1/1 باشد, اگر اتم ها خود را به یکی از شکل هایی به نام فازهای لاوی، همچون ، و در شکل 19 مرتب کند، فضاها به طور موثرتری پر شده و بلور بیشترین فشردگی را دارد. مثال دیگری که اندازه اتمی ساختار را تعیین می کند، تشکیل ترکیبات بین نشین ، ، و است. M می تواند Zr، Ti، V، Cr و X نیز می تواند H و B و C و N باشد. در این حالت اتم های M یک شکل مکعبی یا هگزاگونال به هم فشرده به خود می گیرد و اتم های X که به اندازه کافی کوچک است در فضاهای خالی بین اتم های M قرار می گیرد.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله 40 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله ترمودینامیک در متالوژی فیزیکی

پروژه تحقیقاتی مهندسی مواد و متالوژی - بررسی تغییر درصد تیتانیم و کربن بر روی ریز ساختار و خواص سایشی مکانیکی کامپوزیت فروتیک

اختصاصی از هایدی پروژه تحقیقاتی مهندسی مواد و متالوژی - بررسی تغییر درصد تیتانیم و کربن بر روی ریز ساختار و خواص سایشی مکانیکی کامپوزیت فروتیک دانلود با لینک مستقیم و پر سرعت .

پروژه تحقیقاتی مهندسی مواد و متالوژی - بررسی تغییر درصد تیتانیم و کربن بر روی ریز ساختار و خواص سایشی مکانیکی کامپوزیت فروتیک


پروژه تحقیقاتی مهندسی مواد و متالوژی - بررسی تغییر درصد تیتانیم و کربن بر روی ریز ساختار و خواص سایشی مکانیکی کامپوزیت فروتیک

فرمت : word

چکیده :

هدف اصلی در این پروژه بررسی تغییر درصد تیتانیم و کربن بر روی ریز ساختار و خواص سایشی مکانیکی کامپوزیت فروتیک( Fe/TiC ) است.

نتایج حاصله نشان داده است که با کنترل ترکیب شیمیایی، نوع عملیات حرارتی، اصلبح روش ساخت و سرعت انجمادی قطعه می توان ریز ساختار زمینه، نحوه توزیع ذرات سرامیکی (TiC) و میانگین اندازه ذرات ( TiC) و تعداد آنها در واحد سطح و شکل آنها و کسر حجمی آن و در نهایت چگالی کامپوزیت که منجر به خواص سایشی و مکانیکی متفاوت می گردد را کنترل نمود.

افزایش مقدار کربن و تیتانیم باعث افزایش مقدار کاربید تیتانیم، سختی، مقاومت به سایش و اندازه ذرات کاربیدی می شود در حالی که چگالی کامپوزیت کاهش می یابد.

کامپوزیت مخلوطی از دو یا چند جز با خواص متفاوت است که خواص مجموعه از مجموع

خواص ذرات یا اجزاء تشکیل شده برتر است. اجزای کامپوزیت از نظر شیمیایی، متفاوت و از نظر فیزیکی تفکیک پذیر است. فاز پیوسته را زمینه(matrix) و فاز توزیع شده را تقویت کننده(reinforcement ) گویند. ‌‌‍‌‌‌‌‌‍‍‍‌‌‌‍‍‍‍‌‍‌[2]

در دنیای امروز نیاز صنعت به مواد مهندسی نو ضروری است. در این میان کامپوزیت های زمینه فلزی از جایگاه ویژه ای برخوردار هستند. کامپوزیتهای پایه فلزی از مخلوط و یا ترکیب ذرات سخت سرامیکی و حتی الیاف کربنی در زمینه فلزی با روشهای مختلف بدست می آیند. [2] متداولترین تقویت کننده ها SiC ، TiC , TiB  , Al2O3 و ... است. به طور مثال کامپوزیت

 Al – SiC به جای آلیاژ آلومینیوم، سبب کاهش وزن و افزایش مدول الاستیسیته در پیستونهای دیزلی خواهد شد. [3]

 جدول (1-1) برخی از کامپوزیتهای زمینه فلزی با ذرات استحکام دهنده غیر فلزی را نشان می دهد.

فهرست مطالب

  «عنوان»                                                                              « صفحه»                 

  فصل اول :  مقدمه

مقدمه                                                                             1

 

فصل دوم : مروری بر منابع

1-2- عوامل مؤثر بر خواص کامپوزیتها                                                6

2-2- تقسیم بندی کامپوزیتها                                                                 7       

3-2- تریبولوژی و تریبوسیستم                                                              9                                                                                                                                                                              

1-3-2- تعریف سایش و عوامل اثر گذار روی آن                                          10        

      2-3-2- انواع مکانیزم های سایش                                                                       10

         1-2-3-2- سایش چسبان                                                                     10

         2-2-3-2- سایش خراشان                                                                       11

         3-2-3-2- سایش خستگی                                                                    12                                                                                      

4-2-3-2- سایش ورقه ای                                                                     12  

     5 -2-3-2- سایش اکسایش                                                                   12

    3-3-2- پارامتر سایش                                                                    13

4-3-2- رابطه بین مقاومت به سایش و سختی                                                           13

                5 -3-2- منحنی سایش                                                         14                                                    

4-2- کامپوزیت فروتیک                                                                  14

              1-4-2- انواع کامپوزیت های فروتیک                                                  15

       1-1-4-2- کامپوزیت هایی که با کوئینچ سخت می شوند                                     15

     

 

 2-1-4-2- کامپوزیت هایی که با پیر سختی سخت می شوند                                          16

     2-4-2- روشهای ساخت فروتیک                                                                     17                                             

 1-2-4-2- ساخت کامپوزیت به صورت غیر همزمان                                                 18

                   الف) پراکنده کردن ذرات فاز دوم                                                   18

                   ب) روش پاششی                                                                      19

                   ج) تزریق مذاب فلزی                                                               19

2-2-4-2- ساخت فروتیک به صورت همزمان (  insitu)                                   20

                    الف) سنتز خود احتراقی (SHS)                                              20

                     ب)       XD                                                                   26

                     ج) دمش گاز واکنش دهنده                                                          26

                     د) اکسایش مستقیم فلز( DIMOX)                                                   27

                     ه) primex                                                                          28

                    و) واکنش حین تزریق                                                                28

                    ز) واکنش شیمیایی در داخل مذاب                                                 28

                   ح) روش آلیاژسازی مکانیکی                                                         31 

                   ط) متالورژی پودر                                                                     34

                   ی) احیای کربوترمال                                                                 35

                  ک) احیای ترمیت                                                                     35

                   ل) روش سطحی                                                                    35

     3-4-2- خواص کامپوزیت های فروتیک                                                           36

 1-3-4-2- سختی                                                                               36

 2-3-4-2- استحکام                                                                              37

 3-3-4-2- مدول الاستیکی                                                                          37

4-3-4-2- مقاومت به سایش                                                                        37

          پارامترهای موثر روی سایش                                                                  38

      

                 الف) کسر حجمی کاربید تیتانیم                                                             38

                ب) اندازه ذرات و شکل آنها                                                                 38

                ج) نوع زمینه                                                                        39

                د) کاربید های ریخته گری                                                                40

                

                    ه) عملیات حرارتی و سرعت سرد کردن زمینه                                          40

                     و) نیرو در دستگاه pin on Disk                                                      40

                     ز) عیوب در قطعات                                                                 41

                      ح) اثر ذوب مجدد                                                                           41

                5-3-4-2- ماشین کاری                                                                        41

         6-3-4-2- عملیات حرارتی                                                                    41

          7-3-4-2- جذب ارتعاش                                                                      41

          8-3-4-2- دانسیته                                                                               42

          9-3-4-2- فرسایش                                                                                 42

فصل سوم : مطالعه موردی

     1 -3- روش تحقیق                                                             43       

  1-1-3 - مواد اولیه                                                                                         44 

 2-1-3- عملیات ذوب و ریخته‌گری                                                                    45

3-1-3- آماده سازی نمونه‌ها                                                                           45

4-1-3- آنالیز نمونه‌ها                                                                                    46

5-1-3- متالوگرافی                                                                                      47

6-1-3- آزمایش سختی                                                                                 47

7-1-3- تست سایش                                                                                      48

   2-3-بیان نتایج

1-2-3- ریزساختار نمونه‌های حاوی مقادیر مختلف کربن با تیتانیم ثابت                           49

2-2-3- ریزساختار نمونه‌های حاوی مقادیر مختلف تیتانیم با کربن ثابت                           52

3-2-3- تاثیر درصد کربن بر خواص نمونه‌ها                                                                 55

4-2-3- تاثیر درصد تیتانیم بر خواص نمونه‌ها                                                             55

 5-2-3- نتایج پراش اشعه ایکس                                                                     56

6-2-3- تأثیر درصد کربن بر خواص سایشی نمونه‌ها                                                     59

7-2-3- تأثیر درصد تیتانیم بر خواص سایشی نمونه‌ها                                             60

            3-3- بحث نتایج

          1-3-3- بررسی تشکیل فاز کاربید تیتانیم       61

            2-3-3- مطالعه مسیر انجماد در کامپوزیت Fe-TiC    65

            3-3-3-  تأثیر درصد کربن بر ریزساختار کامپوزیت فروتیک     66

       4-3-3-  تأثیر درصد تیتانیم بر ریزساختار نمونه‌ها         73

        5-3-3- تأثیر درصد کربن بر چگالی کامپوزیت Fe-TiC 78

        6-3-3- تأثیر مقدار کربن بر سختی کامپوزیت Fe-TiC   78

        7-3-3- تأثیر مقدار کربن بر خواص سایشی کامپوزیت Fe-TiC    79

        8 -3-3- تأثیر مقدار تیتانیم بر چگالی نمونه‌ها    80

        9-3-3- تأثیر مقدار تیتانیم بر سختی کامپوزیت Fe-TiC   81

       10-3- 3-تاثیر مقدار تیتانیم بر خواص سایشی کامپوزیت  82

       11-3-3- بررسی سطوح سایش          86

 

   فصل چهارم : نتیجه گیری و پیشنهادها

1-4 نتیجه گیری                                                                            92

       2-4پیشنهادها                                                                                       94                       

 

منابع و مراجع                                                                                       95                                                                     


دانلود با لینک مستقیم


پروژه تحقیقاتی مهندسی مواد و متالوژی - بررسی تغییر درصد تیتانیم و کربن بر روی ریز ساختار و خواص سایشی مکانیکی کامپوزیت فروتیک