هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه ارشد رشته برق - مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ با فرمت ورد

اختصاصی از هایدی دانلود پایان نامه ارشد رشته برق - مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ با فرمت ورد دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه ارشد رشته برق - مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ با فرمت ورد


دانلود پایان نامه ارشد رشته  برق - مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ با فرمت ورد

مدلسازی و شبیه­سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

فهرست مطالب

 

1-1 مقدمه 2

1-2 مدلهای ترانسفورماتور 3

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4

1-2-2 مدل ترانسفورماتور قابل اشباع Saturable Transformer Component (STC Model) 6

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models 7

2- مدلسازی ترانسفورماتور 13

2-1 مقدمه 13

2-2 ترانسفورماتور ایده آل 14

2-3 معادلات شار نشتی 16

2-4 معادلات ولتاژ 18

2-5 ارائه مدار معادل 20

2-6 مدلسازی ترانسفورماتور دو سیم پیچه 22

2-7 شرایط پایانه ها (ترمینالها) 25

2-8 وارد کردن اشباع هسته به شبیه سازی 28

2-8-1 روشهای وارد کردن اثرات اشباع هسته 29

2-8-2 شبیه سازی رابطه بین و ... 33

2-9 منحنی اشباع با مقادیر لحظهای 36

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای 36

2-9-2 بدست آوردن ضرایب معادله انتگرالی 39

2-10 خطای استفاده از منحنی مدار باز با مقادیر rms 41

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان 43

2-11-1 حل عددی معادلات دیفرانسیل 47

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل 53

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن 57

3-1 مقدمه 57

3-2 دامنه افت ولتاژ 57

3-3 مدت افت ولتاژ 57

3-4 اتصالات سیم پیچی ترانس 58

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور 59

  • 3-5-1 خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور 59
  • 3-5-2 خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور 59
  • 3-5-3 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم 60
  • 3-5-4 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم 60
  • 3-5-5 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم 60
  • 3-5-6 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم 60
  • 3-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور 61
  • 3-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور 61
  • 3-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم 61
  • 3-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم 61
  • 3-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم 62
  • 3-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم 62
  • 3-5-13 خطاهای دو فاز به زمین.. 62

3-6 جمعبندی انواع خطاها 64

3-7 خطای Type A ، ترانسفورماتور Dd 65

3-8 خطای Type B ، ترانسفورماتور Dd 67

3-9 خطای Type C ، ترانسفورماتور Dd 69

3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd 72

3-11 خطای Type E ، ترانسفورماتور Dd 72

3-12 خطاهای نامتقارن ، ترانسفورماتور Yy 73

3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg 73

3-14 خطای Type A ، ترانسفورماتور Dy 73

3-15 خطای Type B ، ترانسفورماتور Dy 74

3-16 خطای Type C ، ترانسفورماتور Dy 76

3-17 خطای Type D ، ترانسفورماتور Dy 77

3-18 خطای Type E ، ترانسفورماتور Dy 78

3-19 خطای Type F ، ترانسفورماتور Dy 79

3-20 خطای Type G ، ترانسفورماتور Dy 80

3-21 شکل موجهای ولتاژ جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD 81

شبیه سازی با برنامه نوشته شده 83

3-22 شکل موجهای ولتاژ جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD 85

شبیه سازی با برنامه نوشته شده 87

3-23 شکل موجهای ولتاژ جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD 89

شبیه سازی با برنامه نوشته شده 91

3-24 شکل موجهای ولتاژ جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD 93

شبیه سازی با برنامه نوشته شده 95

3-25 شکل موجهای ولتاژ جریان ترانسفورماتور پنج ستونی برای خطای Type E شبیه سازی با PSCAD 97

شبیه سازی با برنامه نوشته شده 99

3-26 شکل موجهای ولتاژ جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD 101

شبیه سازی با برنامه نوشته شده 103

3-27 شکل موجهای ولتاژ جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD 105

شبیه سازی با برنامه نوشته شده 107

3-28 شکل موجهای ولتاژ جریان چند باس شبکه 14 باس IEEE برای خطای Type D در باس 5 109

3-29 شکل موجهای ولتاژ جریان چند باس شبکه 14 باس IEEE برای خطای Type G در باس 5 112

3-30 شکل موجهای ولتاژ جریان چند باس شبکه 14 باس IEEE برای خطای Type A در باس 5 115

4- نتیجه گیری و پیشنهادات 121

مراجع 123

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

فهرست شکلها

 

شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته

صفحه 5

شکل (1-2) ) مدار ستاره­ی مدل ترانسفورماتور قابل اشباع

صفحه 6

شکل (1-3) ترانسفورماتور زرهی تک فاز

صفحه 9

شکل (1-4) مدار الکتریکی معادل شکل (1-3)

صفحه 9

شکل (2-1) ترانسفورماتور

صفحه 14

شکل (2-2) ترانسفورماتور ایده ال

صفحه 14

شکل (2-3) ترانسفورماتور ایده ال بل بار

صفحه 15

شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

صفحه 16

شکل (2-5) مدرا معادل ترانسفورماتور

صفحه 20

شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

صفحه 24

شکل (2-7) ترکیب RL موازی

صفحه 26

شکل (2-8) ترکیب RC موازی

صفحه 27

شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

صفحه 30

شکل (2-10) رابطه بین و          

صفحه 30

شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

صفحه 32

شکل (2-12) رابطه بین و

صفحه 32

شکل (2-13) رابطه بین و

صفحه 32

شکل (2-14) منحنی مدار باز با مقادیر rms

صفحه 36

شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی

صفحه 36

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

صفحه 36

شکل (2-17) منحنی مدار باز با مقادیر لحظه­ای

صفحه 40

شکل (2-18) منحنی مدار باز با مقادیر rms

صفحه 40

شکل (2-19) میزان خطای استفاده از منحنی rms

صفحه 41

شکل (2-20) میزان خطای استفاده از منحنی لحظه­ای

صفحه 41

شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

صفحه 42

شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه

صفحه 43

شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

صفحه 44

شکل (2-24) ترانسفورماتور پنج ستونه

صفحه 45

شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر

صفحه 47

شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal

صفحه 49

شکل (3-1) دیاگرام فازوری خطاها

صفحه 62

شکل (3-2) شکل موج ولتاژ Vab

صفحه 63

شکل (3-3) شکل موج ولتاژ Vbc

صفحه 63

شکل (3-4) شکل موج ولتاژ Vca

صفحه 63

شکل (3-5) شکل موج ولتاژ Vab

صفحه 63

شکل (3-6) شکل موج جریان iA

صفحه 64

شکل (3-7) شکل موج جریان iB

صفحه 64

شکل (3-8) شکل موج جریان iA

صفحه 64

شکل (3-9) شکل موج جریان iA

صفحه 64

شکل (3-10) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 65

شکل (3-11) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 68

شکل (3-12) شکل موجهای جریان ia , ib , ic

صفحه 68

شکل (3-13) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-14) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-15) شکل موجهای جریان , iB iA

صفحه 69

شکل (3-16) شکل موج جریان iA

صفحه 70

شکل (3-16) شکل موج جریان iB

صفحه 70

شکل (3-17) شکل موج جریان iC

صفحه 70

شکل (3-18) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 71

شکل (3-19) شکل موجهای جریان ia , ib , ic

صفحه 71

شکل (3-20) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 73

شکل (3-21) شکل موجهای جریان ia , ib , ic

صفحه 73

شکل (3-22) شکل موجهای جریان ia , ib , ic

صفحه 74

شکل (3-23) شکل موج ولتاژ Va

صفحه 74

شکل (3-24) شکل موج ولتاژ Vb

صفحه 74

شکل (3-25) شکل موج ولتاژ Vc

صفحه 74

شکل (3-26) شکل موج جریانiA

صفحه 74

شکل (3-27) شکل موج جریان iB

صفحه 74

شکل (3-28) شکل موج جریان iC

صفحه 74

شکل (3-29) شکل موج جریانiA

صفحه 75

شکل (3-30) شکل موج جریان iB

صفحه 75

شکل (3-31) موج جریان iC

صفحه 75

شکل (3-32) شکل موج جریانiA

صفحه 75

شکل (3-33) شکل موج جریان iB

صفحه 75

شکل (3-34) شکل موج جریان iC

صفحه 75

شکل (3-35) شکل موج ولتاژ Va

صفحه 76

شکل (3-36) شکل موج ولتاژ Vb

صفحه 76

شکل (3-37) شکل موج ولتاژ Vc

صفحه 76

شکل (3-38) شکل موج جریانiA

صفحه 76

شکل (3-39) شکل موج جریان iB

صفحه 76

شکل (3-40) شکل موج جریان iC

صفحه 76

شکل (3-41) شکل موج جریانiA

صفحه 76

شکل (3-42) شکل موج جریان iB

صفحه 76

شکل (3-43) شکل موج جریان iC

صفحه 76

شکل (3-44) شکل موج ولتاژ Va

صفحه 77

شکل (3-45) شکل موج ولتاژ Vb

صفحه 77

شکل (3-46) شکل موج ولتاژ Vc

صفحه 77

شکل (3-47) شکل موج جریانiA

صفحه 77

شکل (3-48) شکل موج جریان iB

صفحه 77

شکل (3-49) شکل موج جریان iC

صفحه 77

شکل (3-50) شکل موج جریانiA

صفحه 77

شکل (3-51) شکل موج جریان iB

صفحه 77

شکل (3-52) شکل موج جریان iC

صفحه 77

شکل (3-53) شکل موج ولتاژ Va

صفحه 78

شکل (3-54) شکل موج ولتاژ Vb

صفحه 78

شکل (3-55) شکل موج ولتاژ Vc

صفحه 78

شکل (3-56) شکل موج جریانiA

صفحه 78

شکل (3-57) شکل موج جریان iB

صفحه 78

شکل (3-58) شکل موج جریان iC

صفحه 78

شکل (3-59) شکل موج جریانiA

صفحه 78

شکل (3-60) شکل موج جریان iB

صفحه 78

شکل (3-61) شکل موج جریان iC

صفحه 78

شکل (3-62) شکل موج ولتاژ Va

صفحه 79

شکل (3-63) شکل موج ولتاژ Vb

صفحه 79

شکل (3-64) شکل موج ولتاژ Vc

صفحه 79

شکل (3-65) شکل موج جریانiA

صفحه 79

شکل (3-66) شکل موج جریان iB

صفحه 79

شکل (3-67) شکل موج جریان iC

صفحه 79

شکل (3-68) شکل موج جریانiA

صفحه 79

شکل (3-69) شکل موج جریان iB

صفحه 79

شکل (3-70) شکل موج جریان iC

صفحه 79

شکل (3-71) شکل موج ولتاژ Va

صفحه 80

شکل (3-72) شکل موج ولتاژ Vb

صفحه 80

شکل (3-73) شکل موج ولتاژ Vc

صفحه 80

شکل (3-74) شکل موج جریانiA

صفحه 80

شکل (3-75) شکل موج جریان iB

صفحه 78

شکل (3-76) شکل موج جریان iC

صفحه 80

شکل (3-77) شکل موج جریانiA

صفحه 80

شکل (3-78) شکل موج جریان iB

صفحه 80

شکل (3-79) شکل موج جریان iC

صفحه 80

شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-82) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-83) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-86) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-87) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-90) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-91) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-94) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-95) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-98) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-99) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-102) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-103) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-106) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-107) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-110) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-111) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-114) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-115) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-118) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-119) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-122) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-123) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-126) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-127) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-130) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-131) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-132) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-133) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-134) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-135) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-136) شکل موجهای ولتاژ) (kV

صفحه 109

شکل (3-137) شکل موجهای ولتاژ) (kV

صفحه 110

شکل (3-138) شکل موجهای جریان (kA)

صفحه 111

شکل (3-139) شکل موجهای ولتاژ) (kV

صفحه 112

شکل (3-140) شکل موجهای ولتاژ) (kV

صفحه 113

شکل (3-141) شکل موجهای جریان (kA)

صفحه 114

شکل (3-142) شکل موجهای جریان (kA)

صفحه 115

شکل (3-143) شکل موجهای جریان (kA)

صفحه 116

شکل (3-144) شکل موجهای جریان (kA)

صفحه 117

شکل (3-145) شبکه 14 باس IEEE

صفحه 118


دانلود با لینک مستقیم


دانلود پایان نامه ارشد رشته برق - مدلسازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ با فرمت ورد

مدلسازی و شبیه سازی توربین بادی مجهز به DFIG و STATCOM

اختصاصی از هایدی مدلسازی و شبیه سازی توربین بادی مجهز به DFIG و STATCOM دانلود با لینک مستقیم و پر سرعت .

مدلسازی و شبیه سازی توربین بادی مجهز به DFIG و STATCOM


مدلسازی و شبیه سازی توربین بادی مجهز به DFIG و STATCOM


 

 
 

 

 

 

 

چکیده :

ایراد اصلی توربین های بادی مجهز به ژنراتور القایی از دو سو تغذیه عملکرد آن ها در طی بروز اتصال کوتاه در شبکه می باشد. در این پروژه یک روش جدید برای عملکرد بی وقفه توربین بادی مجهز به ژنراتور القایی از دو سو تغذیه در طی بروز خطا در شبکه ارایه شده است. یک محدود کننده جریان خطا به طور سری با مدار روتور قرار می گیرد، در طی بروز خطا محدود کننده جریان یک سلف بزرگ را وارد مدار روتورمی کند تا از افزایش جریان در مدار روتور جلوگیری کند. هنگامی که خطا رفع شد سلف نیز از مدار روتور خارج می شود. همچنین از یک STATCOM برای تامین توان راکتیو مورد نیاز در حالت دائمی و درطی بروز خطا استفاده شده است. صحت و عملکرد روش با شبیه سازی سیستم قدرت نمونه در محیط نرم افزار PSCAD/EMTDC تایید می شود

فهرست مطالب :

چکیده

مقدمه

فصل اول : مقدمه

فصل دوم : مروری بر کارهای انجام شده

انواع توربین بادی

خصوصیات استاتیکی

اجزای نیروگاه بادی

انواع مختلف توربین های سرعت متغیر

ژنراتور های سنکرون

ژنراتورهای سنکرون با سیم پیچ میدان

ژنراتور های سنکرون مغناطیس دایم

ژنراتور القایی

ژنراتورالقایی از دو سو تغذیه

ژنراتورالقایی روتور قفسی

انواع دیگر

ژنراتور القایی ازدو سو تغذیه بدون جاروبک

ژنراتور القایی دو سرعته

انواع توپولوژی اتصال توربین های بادی در مزرعه

سیستم های قدرت بادی مجهز به DFIG

فصل سوم : مدل سازی و کنترل

ژنراتور القایی از دو سو تغذیه

مدل ماشین

کنترل

STATCOM

مدل سازی وکنترل STATCOM

crowbar

محدود کننده جریان خطا

راکتور های محدود کننده جریان خطا

Is limiter

محدود کننده جریان خطای حالت جامد

محدود کننده جریان خطا ابر رسانا

نوع مقاومتی

نوع سلفی

نوع راکتور DC

فصل چهارم : شبیه سازی

عملکرد بی وقفه توربین بادی

سیستم قدرت نمونه

نتایج حاصل از شبیه سازی

اتصال کوتاه سه فاز بدون حفاظت مبدل سمت روتور

اتصال کوتاه سه فاز با استفاده از روش انسداد و STATCOM

اتصال کوتاه سه فاز با استفاده از FCL و بدون STATCOM

اتصال کوتاه سه فاز با استفاده از FCL و STATCOM

فصل پنجم : نتیجه‌گیری و پیشنهادات

نتیجه‌گیری

پیشنهادات

 

پیوست ها

ضمیمه

منابع و ماخذ

فهرست منابع فارسی

فهرست منابع لاتین

چکیده انگلیسی


دانلود با لینک مستقیم


مدلسازی و شبیه سازی توربین بادی مجهز به DFIG و STATCOM

سمینار مدلسازی جریان سیال غیرنیوتنی به روش شبکه بولتزمن

اختصاصی از هایدی سمینار مدلسازی جریان سیال غیرنیوتنی به روش شبکه بولتزمن دانلود با لینک مستقیم و پر سرعت .

سمینار مدلسازی جریان سیال غیرنیوتنی به روش شبکه بولتزمن


سمینار مدلسازی جریان سیال غیرنیوتنی به روش شبکه بولتزمن

در سالهای اخیر توانایی روش شبکه بولتزمن در مدلسازی جریان­های پیچیده مانند جریان­های دوفازی، جریان در محیط متخلخل و همینطور جریان سیالات غیرنیوتنی به اثبات رسیده‌­است. این روش در عین سادگی دقت بسیار بالایی دارد و در مرکز توجه بسیاری از دانشمندان قرار گرفته‌­است. در این مقاله ضمن معرفی این روش، به مرور برخی از مقالات معتبر در زمینه مدلسازی انواع سیالات غیرنیونتی به روش شبکه بولتزمن پرداخته شده‌­است.

 

این محصول در واقع یک سمنار کامل و با کیفیت است و شامل تمام فایل‌های وورد، پی دی اف، پاورپوینت و پاورپوینت شو می‌باشد.

برای اطلاعات بیشتر و دانلود ورژن رایگان این محصول به وبلاگ اصلی شبکه بولتزمن ایرانی مراجعه نمایید.


دانلود با لینک مستقیم


سمینار مدلسازی جریان سیال غیرنیوتنی به روش شبکه بولتزمن

آموزش کتیا، طراحی و مدلسازی پره فن (Fan blade) در محیط Generative Shape Design نرم افزار CATIA

اختصاصی از هایدی آموزش کتیا، طراحی و مدلسازی پره فن (Fan blade) در محیط Generative Shape Design نرم افزار CATIA دانلود با لینک مستقیم و پر سرعت .

آموزش کتیا، طراحی و مدلسازی پره فن (Fan blade) در محیط Generative Shape Design نرم افزار CATIA


آموزش کتیا، طراحی و مدلسازی پره فن (Fan blade) در محیط Generative Shape Design نرم افزار CATIA

 

 

 

 

 

 

در این جزوه آموزشی، طراحی و مدلسازی پره فن (Fan blade) به صورت گام به گام و به زبان فارسی (14 صفحه)، در محیط های زیر به کاربر آموزش داده می شود:

* Generative Shape Design (محیط سطح سازی پیشرفته کتیا)

* Part Design (محیط سه بعدی سازی کتیا)

* Sketcher (محیط طراحی دوبعدی کتیا)


جهت خرید جزوه آموزش طراحی و مدلسازی پره فن (Fan blade) در محیط Generative Shape Design نرم افزار CATIA به مبلغ استثنایی فقط 2000 تومان و دانلود آن بر لینک پرداخت و دانلود در پنجره زیر کلیک نمایید.

!!لطفا قبل از خرید از فرشگاه اینترنتی کتیا طراح برتر قیمت محصولات ما را با سایر محصولات مشابه و فروشگاه ها مقایسه نمایید!!

 

!!!تخفیف ویژه برای کاربران ویژه!!!

با خرید حداقل 10000 (ده هزارتومان) از محصولات فروشگاه اینترنتی کتیا طراح برتر برای شما کد تخفیف ارسال خواهد شد. با داشتن این کد از این پس می توانید سایر محصولات فروشگاه را با 20% تخفیف خریداری نمایید. کافی است پس از انجام 10000 تومان خرید موفق عبارت درخواست کد تخفیف و ایمیل که موقع خرید ثبت نمودید را به شماره موبایل 09365876274 ارسال نمایید. همکاران ما پس از بررسی درخواست، کد تخفیف را به شماره شما پیامک خواهند نمود


دانلود با لینک مستقیم


آموزش کتیا، طراحی و مدلسازی پره فن (Fan blade) در محیط Generative Shape Design نرم افزار CATIA

دانلود ترجمه مقاله مدلسازی مدیریت تصادف خودرو با روش KAOS *

اختصاصی از هایدی دانلود ترجمه مقاله مدلسازی مدیریت تصادف خودرو با روش KAOS * دانلود با لینک مستقیم و پر سرعت .

دانلود ترجمه مقاله مدلسازی مدیریت تصادف خودرو با روش KAOS *


دانلود ترجمه مقاله مدلسازی مدیریت تصادف خودرو با روش KAOS *

دانلود ترجمه مقاله مدلسازی مدیریت تصادف خودرو  با روش KAOS ؛ یک مقاله خوب برای رشته روانشناسی در 14 صفحه ترجمه شده و برای دانلود شما مهیا گردیده است.

 

چکیده:

داشتن نرم افزار مورد نیاز برای مفروضات لازم ، یک پیش شرط مهم برای توسعه نرم افزار است. KAOS نرم افزاری است که مبتنی بر تشریح سازگاری کامل و کافی بوده و به خوبی از نرم افزارهای مورد نیاز اندازه گیری و مفروضات سازمان یافته است. زمان مدلسازی و روش پوشش به صورت عمدی و ساختاری و کاربردی و رفتارهای سیستم هدف است. مدل فرعی و عملیاتی یکپارچه شده است. تکنیک های نیمه  رسمی و رسمی مکمل یکدیگر برای ساخت مدل  و تجزیه و تحلیل کامل ان است. آنها پشتیابنی اولیه داشته و استدلال افزایش د مدل های جزئی برای تنوع از اهداف، از جمله استدلال رضایت هدف و ارزیابی گزینه ی جایگزین و تجزیه و تحلیل خطر است و تهدید ها و درگیری ها و مدیریت قابلیت ردیابی دارد. در این مقاله زبان مدلسازی و روش تصادف ماشین، مورد مطالعه قرار می گیرد. مدل کلی تولید و ادغام به هدف و عامل و عمل و رفتار ، مدل اصلی از سیستم است. مقاله به تشریح برخی از ویژگی ها توسط KAOS برای مدل به صورت تدریجی اقدام نموده است که از جمله ان شناسایی هدف و پالایش و دامنه مفاهیم ساختار و تجزیه و تحلیل خطر بای افزایش کامل عملیاتی هدف است.


دانلود با لینک مستقیم


دانلود ترجمه مقاله مدلسازی مدیریت تصادف خودرو با روش KAOS *