تاریخچه و انواع میکروسکوپ 16 صفحه
میکروسکوپ
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:20
فهرست مطالب
میکروسکوپ الکترونی
1- مقدمه
2- عدسی های مغناطیسی
3- لنزهای الکترو مغناطیس در دستگاه ولتاژ بالا
1- مقدمه
به طور کلی در میکروسکوپ های الکترونی سه نوع عدسی وجود دارد:
1-عدسی جمع کننده (Condenser Lens)
2-عدسی شیئی (Objective Lens)
3-عدسی تصویری (Projector Lens)
عدسی جمع کننده دسته الکترون را بر روی نمونه متمرکز می نماید. عدسی شیئی یک تصویر بزرگ شده اولیه ایجاد نموده، برای حصول بزرگنمایی بیشتر از عدسی تصویری استفاده می شود. تصویر نهایی بدست آمده بر روی یک صفحه فلورسنت قابل رویت است.
از انواع عدسی های شیئی مورد مصرف می توان به:
اشاره نمود. تصویری از این دو نوع عدسی در شکل مشاهده می شود. عمدتا عدسی های مخروطی در میکروسکوپ الکترونی روبشی Scanning Electron Microscope) عدسی های فروبر در میکروسکوپ الکترونی عبوری Transmission Electron Microscope یا TEM کاربرد دارند.
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:38
فهرست مطالب
تاریخچه علم فیزیک
فیزیک و سایر علوم
تلسکوپ
بزرگنمایی واقعی تلسکوپ چقدر است؟
مشخصه اصلی یک تلسکوپ چیست؟
کدام تلسکوپ، شکستی، بازتابی یا اشمیت-کاسگرن؟
تلسکوپ بزرگ بهتر است یا کوچک؟
دوربین های تک چشمی یا دو چشمی به درد رصدهای نجومی می خورند یا نه؟
استقرار سمت ارتفاعی بهتر است یا استوایی؟
بهترین فاصله کانونی برای تلسکوپ ها کدام است؟
گالیله , سازنده اولین تلسکوپ:
میکروسکوپ
سیر تحولی و رشد
انواع میکروسکوپ از نظر ساختمان داخلی:
قانون بقای بار الکتریکی
بیان ساده ای از قانون بقای بار
مبادله ی بار و قانون بقای بار الکتریکی
خواص بار های الکتریسیته
علم فیزیک رفتار و اثر متقابل ماده و نیرو را مطالعه میکند. مفاهیم بنیادی پدیدههای طبیعی تحت عنوان قوانین فیزیک مطرح میشوند. این قوانین به توسط علوم ریاضی فرمول بندی میشوند، بطوری که قوانین فیزیک و روابط ریاضی باهم در توافق بوده و مکمل هم هستند و دوتایی قادرند کلیه پدیدههای فیزیکی را توصیف نمایند.
تاریخچه علم فیزیک
از روزگاران باستان مردم سعی میکردند رفتار ماده را بفهمند. و بدانند که: چرا مواد مختلف خواص متفاوت دارند؟ ، چرا برخی مواد سنگینترند؟ و ... همچنین جهان ، تشکیل زمین و رفتار اجرام آسمانی مانند ماه و خورشید برای همه معما بود. قبل از ارسطو تحقیقاتی که مربوط به فیزیک میشد ، بیشتر در زمینه نجوم صورت میگرفت. علت آن در این بود که لااقل بعضی از مسائل نجوم معین و محدود بود و به آسانی امکان داشت که آنها را از مسائل فیزیک جدا کنند.
در برابر سؤالاتی که پیش میآمد گاه خرافاتی درست میکردند، گاه تئوریهایی پیشنهاد میشد که بیشتر آنها نادرست بود. این تئوریها اغلب برگرفته از عبارتهای فلسفی بودند و هرگز بوسیله تجربه و آزمایش تحقیق نمیشدند و بعضی مواقع نیز جوابهایی داده میشد که لااقل بصورت اجمالی و با تقریب کافی به نظر میرسید.
جهان به دو قسمت تقسیم میشد: جهان تحت فلک قمر و مابقی جهان. مسائل فیزیکی اغلب مربوط به جهان زیر ماه بود و مسائل نجومی مربوط به ماه و آن طرف ماه نیز «فیزیک ارسطو» یا بطور صحیحتر «فیزیک مشائی» بود که در چند کتاب مانند «فیزیک» ، « آسمان» ، « آثار جوی» ، « مکانیک» ، « کون و فساد» و حتی«مابعدالطبیعه» دیده میشد.
تا اینکه در قرن 17 ، گالیله برای اولین بار به منظور قانونی کردن تئوریهای فیزیک ، از آزمایش استفاده کرد. او تئوریها را فرمولبندی کرد و چندین نتیجه از دینامیک و اینرسی را با موفقیت آزمایش کرد. پس از گالیله ، اسحاق نیوتن ، قوانین معروف خود (قوانین حرکت نیوتن) را ارائه کرد که به خوبی با تجربه سازگار بودند. بدین ترتیب فیزیک جایگاه علمی و عملی خود را یافت و روز به روز پیشرفت کرد، مباحث آن گستردهتر شد، تا آنجا که قوانین آن از ریزترین ابعاد اتمی تا وسیعترین ابعاد نجومی را شامل میشود. اکنون فیزیک مانند زنجیری محکم با بقیه علوم مرتبط است و هنوز هم به سرعت در حال گسترش و پیشرفت میباشد. نقش فیزیک در زندگی هر فرد بزرگ یا کوچک ، درس خوانده یا بیسواد ، شاغل یا بیکار خواه ناخواه با فیزیک زندگی میکند. عمل دیدن و شنیدن ، عکس العمل در برابر اتفاقات ، حفظ تعادل در راه رفتن و ... نمونههایی از امور عادی ولی در عین حال وابسته به فیزیک میباشند.
پدیدههای جالب طبیعی نظیر رنگین کمان ، سراب ، رعد و برق ، گرفتگی ماه و خورشید و ... همه با فیزیک توجیه میشوند. برنامههای رادیو ، تلویزیون ، ماهواره ، اینترنت ، تلفن و ... با کمک فیزیک مخابره میشوند. با این نمونههای ساده میتوان تصور کرد که اگر فیزیک نبود و اگر روزی قوانین فیزیک بر جهان حاکم نباشند، زندگی و ارتباطات مردم شدیدا دچار مشکل میشود.
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:31
فهرست مطالب
میکروسکوپ فاز کنتراست
مقدمه اصول کلی ملزومات یک میکروسکوپ فاز – کنتراست
روش استفاده از میکروسکوپ فاز – کنتراست
بعضی موارد کاربرد میکروسکوپ فاز - کنتراست
نور پلاریزه
میکروسکوپهای پلاریزان
روشهای تولید نور پلاریزه
منشور نیکول
تورمالین
آنالیزور (Analyser)
وسائل اضافی که جهت جبران تأخیر فاز بکار
مشاهده بوسیله نور پلاریزه تشخیص فشار آزمایش پلیکریم (Test for pleochrosim)
تست ایزوتروپیکی مواد مواد بی رنگ غیر ایزوتروپ در نور تکرنگ
احتمالا مهمترین پیشرفتی که در تکنیک میکروسکوپی در سالهای قبل از 1960 حاصل شد توسعه میکروسکوپهای فاز کنتراست و تداخلی بود. در این نوع میکروسکوپها بافتهای زنده را در حالی که ثابت نشدهاند (unstained) میتوان با کانتراست خوب و رزولوشن مناسب مشاهده نمود. برای آنکه بتوان جزئیات یک شیئی را قابل رویت نمود. این عمل را با رنگ آمیزی میتوان انجام داد. در صورتی که شیئی مورد نظر رنگ آمیزی نشده (unstained) باشد میتوان بدون دخالت در ساختمان یا حیات آن شیئی ضریب انکسار قسمتهای متعددی از آنرا کم یا زیادتر از مادهای که شیئی در آن قرار دارد نمود. در صورتی که اختلاف ضریب شکستها خیلی کم باشد. به گونهای که قابل مشاهده نباشد میتوان از میکروسکوپ زمینه تاریک استفاده نمود. میکروسکوپ زمینه تاریک عمدتا نشان دهنده لایههای سطحی نمونه بجای ساختمان داخلی میباشد.
علاوه بر آن لازمه این سیستمها استفاده از لامپهای با قدرت زیاد میباشد که بعضا وقتی که مدت زمان مشاهده زیاد باشد بایستی از سیستم خنک کننده استفاده شود. این در حالی است که میکروسکوپ فاز – کنتراست دارای این اشکالات نمیباشد و میتوان ساختمان داخلی شیئی را بخوبی مشاهده نمود. در حالت کلی بخشهایی از شیئی که دارای ضرائب انکسار زیادتر باشند در مقایسه با زمینه روشنتر تاریک و یا بلعکس میباشد که البته این مطلب بستگی به نوع سیستم – منفی یا مثبت بودن میکروسکوپ دارد. لامپ نوری مورد استفاده در این نوع میکروسکوپ یک لامپ معمولی میباشد و همه دهانه عدسی شیئی در تشکیل تصویر شرکت مینمایند. در این نوع میکروسکوپ و رزولوشن نسبت به زمینه تاریک ضعیفتر است و این بخاطر پدیده شکست نور و تغییر فاز آن میباشد.
اصول کلی هدف از این میکروسکوپها قابل دیدن نمونههائی است که موجب تغییر قابل توجهی در شدت (دامنه) نور عبوری از آن مثل حالت نمونههای رنگ آمیزی شده (stained) نمیباشد. تنها تغییری که اجزاء مختلف این گونه نمونهها بر روی نور عبوری بوجود میآورند آن است که موجب تغییر در فاز آنها میشود. به عبارت دیگر در روشهای میکروسکوپهای معمولی سیستم ساختمانی نمونه به گونهای است که اجزاء مختلف آن دارای خاصیت جذب متفاوت نور برخوردی به آنها میباشد و بدین لحاظ نور عبور کرده از نمونه در قسمتهای مختلف دارای شدتهای مختلفی میباشند که این تغییر در شدت بستگی به مقدار جذب در قطعات و اجزاء مختلف نمونه وارد و بنابراین ناحیهای که جذب کمتر اتفاق میافتد تصویر شیئی روشنتر و بخشهای با جذب بیشتر تاریکتر مشاهده میشوند. در این نمونهها تصویر از نور عبور نموده از نمونه تشکیل میشود. بسیاری از نمونهها شدت نور عبور نموده را تغییر چندانی نمیدهند و لیکن اجزاء مختلف موجب تغییر فاز نور عبور نموده از آنها میشوند و لیکن با توجه به آنکه چشم حساس به فاز یا تغییر فاز نمیباشند لذا بایستی به نحوی این تغییر فاز را قابل مشاهده نمائیم. بنابراین هدف از میکروسکوپ فاز کنتراست تبدیل تغییر فاز به تغییر دامنه است که بتواند بوسیله چشم قابل مشاهده شود.
وقتی که نور از کندانسور عبور نموده و به شیئی برخورد نماید در آن صورت به دلیل پدیده تفرق حاصله در اثر جسم طیف تفرق یافته در پشت عدسی چشمی حاصل میشود. با توجه به آنکه جسم مثل یک شبکه متفرق کننده عمل مینماید در آن صورت تصویر در این شبکه در اثر تفرق در پشت عدسی چشمی ایجاد میشود. تصویر حاصله که نشان دهنده جزئیات جسم است در اثر ترکیب نور متفرق شده و نور عبور نموده بدون تفرق ایجاد میشود. به علت آنکه بین نور متفرق شده و نور عبور نموده بدون تفرق ایجاد میشود. به علت آنکه بین نور متفرق شده و نور مستقیم اختلاف فاز وجود دارد لذا این دو نوع پرتو با همدیگر ترکیب شده و تداخل انجام میشود و در نتیجه اختلاف فاز این دو نوع نوز ایجاد تغییر در دامنه یا شدت نور در صفحه تصویر مینماید. میکروسکوپهای فاز – کنتراست بگونه ای طراحی شده اند که تغییر فاز حاصله در اثر وجود نمونه و تغییر فاز در اثر تغییر ضریب شکست در اجزاء مختلف آن این تغییر فاز به تغییر شدت تبدیل شود.
در صورتی که نورهای عبور نموده از جزهای مجاور همدیگر دارای اختلاف فاز ناچیز باشند در آن صورت اختلاف فاز بین تقریبهای صفر و یک برابر λ 4/0 خواهد بود. در آن صورت به دلیل این اختلاف فاز نور ترکیب شده ، تشکیل نوارهای تداخلی مینماید. حال اگر توجه نمائیم نور عبور نموده از طرف دیگر نیز به همین شکل دارای اختلاف فاز ولی در جهت عکس همدیگر میشوند و لذا نور رسیده به آن نقطه صفر میباشد و بنابراین ساختمان شیئی قابل رؤیت نمیباشد. در میکروسکوپهای فاز کنتراست تأثیر یک مانع با ضخامت λ 4/0 آن است که موجب هم فاز ساختن نوارهای تداخلی از دو طرف شود و در نتیجه افزایش دامنه حاصل می شود.