مقدمه و معرفی
در ریاضیات اتحادها تساوی هایی هستند که به ازای هر مقدار عددی از دامنه خود که بجای متغییرهایشان قرار دهیم همواره برقرار باشند. به عنوان مثال تساوی برای هر x عضو دامنه برقرار است. لذا این عبارت جبری یک اتحاد است، اما تساوی فقط برای x=1 برقرار است. پس این عبارت یک اتحاد نمی باشد. در واقع در مورد یک اتحاد در اصل به یک تساوی بدیهی چون 0=0 می رسیم.
به عنوان مثال در اتحاد مثال زده شده دو طرف ساده شده و تساوی 0=0 حاصل می شود.
به این ترتیب تفاوت میان یک اتحاد جبری و یک معادله جبری در این است که اتحاد جبری به ازای همه مقادیر دامنه برقرار است در صورتی که یک معادله جبری به ازای تعداد محدودی از اعضای دامنه(مجموعه جواب معادله) برقرار است.
عبارات زیر نمونه ای از اتحاد است:
اتحادهای مهم جبری
در میان اتحادهای جبری، برخی از اتحادها بسیار مهم و کاربردی می باشند و در حل معادلات، محاسبات جبری، تجزیه عبارت جبری و... بسیار کاربرد دارند. از این رو دانستن و به کاربردن آنها از اهمیت خاصی برخوردار است. در این قسمت به بررسی این اتحادهای مهم می پردازیم.
اتحاد مربع مجموع دو جمله
مثال:
اتحاد مربع تفاضل دو جمله
مثال:
اتحاد مکعب مجموع دو جمله
مثال:
اتحاد بسط دو جمله ای نیوتن
در دو اتحاد قبل مشاهدی کردید که عبارت مجموع با تفاضل دو جمله چون (a+b)،(a-b) به توان های دو و سه رسیدند. حال این اتحاد برای توانهای طبیعی n هم قابل تعمیم است و به آن اتحاد بسط دو جمله ای نیوتن می گویند.
مثال:
اتحاد مربع سه جمله
مثال:
تعمیم اتحاد مربع چند جمله
مثال:
اتحاد مزدوج
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 8 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلودمقاله اتحاد ها