هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

کتاب و حل المسائل حساب دیفرانسل و انتگرال توماس جلد1و2 (ترجمه و نسخه ی اصلی )

اختصاصی از هایدی کتاب و حل المسائل حساب دیفرانسل و انتگرال توماس جلد1و2 (ترجمه و نسخه ی اصلی ) دانلود با لینک مستقیم و پر سرعت .

کتاب و حل المسائل حساب دیفرانسل و انتگرال توماس جلد1و2 (ترجمه و نسخه ی اصلی )


کتاب و حل المسائل حساب دیفرانسل و انتگرال توماس جلد1و2 (ترجمه و نسخه ی اصلی )

کتاب حساب دیفرانسیل و انتگرال توماس  یکی از مراجع  کتب پایه مهم دانشجویان مهندسی برق  می باشد که در اکثر دانشگاه ها تدریس می شود 

در این کتاب به تحلیل و بررسی اصول ریاضیات پایه پرداخته شده است 

در فایل پیشه رونسخه ی فارسی و انگلیسی  ویرایش یازدهم و دوازدهم  این کتاب به همراه حل المسائل تمامی فصول قرار داده شده است.

 

نام کامل کتاب : حساب دیفرانسیل و انتگرال و هندسه تحلیلی

نویسنده : جورج توماس ، راس فینی

مترجم : جلد اول : مهدی بهزاد ، سیامک کاظمی ، علی کافی | جلد دوم : حسین صالحی ، رضا هاشم پور

ناشر : جلد اول : مرکز نشر دانشگاهی | جلد دوم : گنج نفیس

نوبت چاپ : نوزدهم ۱۳۸۶ | دوازدهم ۱۳۹۰

زبان : فارسی

 

 

برای دانلود به پایین صفحه مراجعه کنید 


دانلود با لینک مستقیم


کتاب و حل المسائل حساب دیفرانسل و انتگرال توماس جلد1و2 (ترجمه و نسخه ی اصلی )

تحقیق درمورد انتگرال تصادفی

اختصاصی از هایدی تحقیق درمورد انتگرال تصادفی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 66

 

انتگرال تصادفی: (18)

فرآیند x(t)، انتگرال پذیر MS است اگر

(5-39)

قضیه: فرآیند x(t) انتگرال پذیر MS است اگر (5-40)

نتیجه: (5-41)

فصل ششم: زنجیرهای مارکف:

فرآیندهای مارکف یک تعمیم ساده برای فرآیندهای مستقل است برای مجاز کردن وابستگی برآمد فاصله به یکی از برآمدهای قبلی که به برآمدهای قبل از آن وابسته نباشد. بنابراین در فرآیند مارکف x(t) گذشته روی آینده بی تاثیر است اگر وضعیت فعلی فرآیند مشخص باشد. یعنی اگر آنگاه: (6-1)

 

و اگر آنگاه:

حالت خاصی از فرآیندهای مارکف، زنجیر مارکف است. هر دو فرآیند و زنجیر مارکف تبه به اینکه فضای حالتشان گفته یا پیوسته است، می توانند گسسته یا پیوسته باشند.

تعریف: زنجیر مارکف با زمان گسسته یک فرآیند تصادفی مارکف است که فضای حالت آن مجموعه ای شمارا یا شما را نامتناهی بوده و در آن که تعداد Lxn نتیجه آزمایش n ام می نامند.

تئوری زنجیرهای پیوسته(زنجیرهایی با فضای حالت ناشما را یا شما را نامتناهی) بوسیله کلوموگروف آغاز و پل به وسیله دوبلین- دوب- لوی و بسیاری دیگر اولویت یافت.

احتمالات انتقال: (20)

احتمال تغییر وضعیت یک مرحله ای برابر احتمال شرطی است که به صورت زیر تعریف می شود:

(6-3)

احتمال تغییر وضعیت یک مرحله ای برابر احتمال رفتن از حالت I به حالت j در یک دوره زمانی با آغاز از n بیان می شود.

این نماد تاکید می کند که در حالت کلی، احتمالات انتقال نه فقط توابعی از وضعیت ابتدایی و انتهایی اند، بلکه به زمان انتقال نیز بستگی دارند.

تعریف، وقتی احتمالات انتقال یک مرحله ای از متغیر زمان( یعنی مقدار n) منتقل باشند، آنگاه گوییم فرآیند مارکف دارای احتمالات انتقال مانا می باشد. ماتریس مارکف یا ماتریس احتمال انتقال یک آرایه مربعی نامتناهی به صورت. می باشد که در آن سطر(i+1) ام توزیع احتمال مقادیر Xn+1 تحت شرط(Xn=i) است.

هر گاه تغییر حالتها متناهی باشد آنگاه P یک ماتریس مربعی متناهی است که مرتبه اش( تعداد سطرها) مساوی تعداد حالتهاست. واضح است که Pij ما در شرایط زیر صدق می کنند:

 

سطر فرآیندی با مشخص بودن تابع احتمال انتقال یک مرحله ای و X0(به عنوان حالت آغازین فرآیند) کاملا معین است زیرا طبق تعریف احتمالات شرطی، داریم:

 

(6-5)

و اگر فضای حالت متوالی نباشد یا فرآیند فضای حالت را به گونه ای متوالی طی نکند می توان گفت:

(6-6)

نمونه هایی از زنجیره های مارکف: (20)

1) زنجیرهای مارکف همگن: (18)

تعریف: یک زنجیر مارکف را همگن در زمان نامنداگر(m,n) Pij فقط به تفاضل n-m بستگی داشته باشد. و اگر این احتمالات انتقال به زمان بستگی داشته باشند آنگاه فرآیند را ناهمگن می گوئیم. اگر زنجیر همگن باشد، احتمالات تغییر وضعیت را مانا می نامیم و (6-7)

که نشان دهنده احتمال شرطی یک زنجیر مارکف همگن است زمانی که زنجیر در n مرحله از حالتi به حالت j می رود.

مدت زمانی که زنجیر مارکف همگن y صدف می کند در رسیدن به یک حالت(زمان رسیدن) باید بی حافظه باشد، زمانی که حالت فعلی برای تعیین آینده کافیست. بنابراین در حالت گسسته اگر زمانهای جاری tn به طور یکنواخت در tn=nt قرار بگیرند، y رابطه زیر را برآورد می سازد که y یک متغیر تصادفی هندسی است.

(6-8)

بنابراین مدتی که یک زنجیر مارکف گسسته زمان همگن در هر حالتی می گذارند یک توزیع هندسی است.

زنجیره های مارکف همگن(فضایی) را در دو حالت بررسی کرده و در هر حالت فرض می کنیم:

یک متغیر تصادفی گسسته با مقدار صحیح نامنفی باشد

همچنین و

مشاهداتی مستقل از باشند و همچنین فضای فرآیند مجموعه اعداد صحیح نامنفی است.

الف) فرآیند به ازای را در نظر می گیریم که با تعریف شده است. ماتریس آن


دانلود با لینک مستقیم


تحقیق درمورد انتگرال تصادفی

تحقیق درباره دیفرانسیل انتگرال 14 ص

اختصاصی از هایدی تحقیق درباره دیفرانسیل انتگرال 14 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 14

 

1-آشنایی

حساب دیفرانسیل و انتگرال تاحدود زیادی عبارت است از مطالعه میزانهای تغییر کمیات. لازم است که ببینیم وقتی شناسه x به عددی نزدیک می‌شود،‌ رفتار مقدار f(x) تابع f چگونه است. این امر ما را به ایده حد می‌رساند.

مثال: تابع f را با فرمول

 

وقتی این فرمول معنی دارد، تعریف کنید. لذا f به ازای هر x که مخرج x-3 صفر نباشد، یعنی ، تعریف شده است وقتی x به 3 نزدیک شود،‌مقدار f(x) چه خواهد شد؟ به 9 و در نتیجه نزدیک می‌شود. به علاوه x-3 به 0 نزدیک می‌گردد. چون صورت و مخرج هر دو به 0 نزدیک می‌شوند.

با این حال اگر صورت را تجزیه کنیم، می‌بینیم که

 

چون با نزدیک 3 شدن x ، x+3 به 6 نزدیک می‌شود، تابع ما با نزدیک 3 شدن به x به 6 نزدیک خواهد شد. شیوه ریاضی بیان این امر آن است که بنویسیم.

 

این عبارت خوانده می‌شود: حد وقتی x به 3 نزدیک شود 6 است.

توجه کنید که وقتی x به عددی غیر از 3 نزدیک شود مشکلی نداریم. مثلا وقتی x به 4 نزدیک شود،‌ به 7 و 3-x به 1 نزدیک خواهد شد، لذا،

 

2-خواص حدها

در مثال قبل بعضی از خواص واضح حد تلویحا فرض شده بود. حال آنها را به طور صریح می‌نویسیم.

خاصیت یک .

 

این خاصیت مستقیما از مفهوم حد نتیجه می‌شود.

خاصیت دو،‌اگر c ثابت باشد،

 

وقتی x نزدیک a شود، مقدار c مساوی c می‌ماند.

خاصیت سه . اگر c ثابت بوده و f تابع باشد،

 

چند مثال.

 

 

خاصیت چهار ، اگر f و g تابع باشند:

 

در این صورت وجود ندارد. وقتی x از چپ به 1 نزدیک شود (یعنی‌از طریق مقادر x<1) ،‌f(x) به 1 نزدیک می‌گردد. ولی وقتی x از راست به 1 نزدیک شود یعنی، از طریق مقادیر x>1) ، f(x) به 2 نزدیک می‌گردد.

توجه کنید که وجود یا عدم وجود حد f(x) وقتی نه به مقدار f(a) بستگی دارد و نه حتی لازم است f در a تعریف شده باشد. هرگاه ، آنگاه L عددی است،‌که با رفتن x به قدر کافی نزدیک به a ، می‌توان f(x) را به دلخواه به آن نزدیک کرد. مقدار L (یا وجود L) با رفتار f در مجاورت a معین می‌شود نه با مقدارش در a (اگر چنین مقداری حتی موجود باشد) .

مسائل حل شده :

8-1-حدود زیر را (در صورت وجود ) بیابید.

الف) ب)

پ) ت)

حل. (الف) هر دوی و 1/y وقتی 2 y ( دارای حدند، لذا، طبق خاصیت پنچ

 

ب) در اینجا باید به طور غیر مستقیم عمل کرد. تابع وقتی 0 x( دارای حد است . لذا، با فرض وجود این حد، خاصیت پنج ایجاب می‌کند که

 

نیز موجود باشد. ولی این امر ممکن نیست ، لذا،

 

موجود نخواهد بود.

(پ)

(ت) وقتی x از راست به 2 نزدیک می‌شود ( یعنی 2 x> ) ،‌[x] مساوی 2 می‌ماند ولی وقتی x از چپ به 2 نزدیک شود (یعنی 2 x<)، [x] مساوی 1 خواهد ماند. لذا، وقتی x به 2 نزدیک شود،‌عدد منحصر به فردی وجود ندارد که [x] بدان نزدیک گردد. پس وجود نخواهد داشت.

2-حد

 

(این حد در حساب دیفرانسیل اهمیت خواهد داشت) را برای هر یک از توابع زیر بیابید:

(الف) ب)

پ)

حل: (الف)

f(x+h) = 3(x+h) – 1 = 3x + 3h – 1

f(x) = 3x-1

f(x+h) – f(x) = (3x + 3h –1) – (3x-1) = 3x + 3h – 1 – 3x – 1 – 3x + 1=3h

 

لذا،

 

ب)


دانلود با لینک مستقیم


تحقیق درباره دیفرانسیل انتگرال 14 ص

مقاله انتگرال

اختصاصی از هایدی مقاله انتگرال دانلود با لینک مستقیم و پر سرعت .

مقاله انتگرال


مقاله انتگرال

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:103

فصل ششم :

 انتگرال گیری :

 1 . 6 ) انتگرال گیری Riemann – Stieltje

 فرض کنید که f یک تابع کران دار در محدوده ی [a,b] می باشد. اگر D یک فسمتی از [a,b] باشد می دهد :

 

 پس

 سپس مجموع این دو معادله می دهد

(11 . 6)                                               

 و تقریب زدن با انتگرال گیری Riemann می دهد، زمانیکه آن در (4 – 123 و C1 ) وجود دارد.

 در گستره ی بیشتر از این فرآیند را می توان در کارهای Stieltjes مشاهده کرد، وی معرف دومین تابع می باشد یعنی g ، فرض بر افزایش [a,b] ( در یک محدوده ی کران دارد) و جایگزینی در (11 . 6) توسط . این روش جدید منجر به انتگرال گیری از f با محدوده ی g می گردد. و جمع بستن این معادله با (11 . 6) می دهد.

 (12 . 6)                                              

(13 . 6)                                             

 آنها با کم کردن (11 . 6) زمانیکه را به دست می آورند.

 تشخیص کمترین و بیشترین مقدار f(x) در ضابطه ی [a,b] توسط M , m ، ما خواهیم داشت :

 

 پس برای تمام تجزیه های D ، کمترین جمع بندی (12 . 6) و بالاترین جمع ها شامل (13 . 6) خواهد بود راحت است که شاهد معرفی روش های جدید در افزایش پایین ترین و بالاترین و کم شدن آنها در جمع باشیم. (ببینید تمرین 6(a).1 . از این به بعد که ماتزل جمع را کمتر از یا برابر با هر صعود جمعی در نظر می گیریم. برای  هر محدوده ای از [a,b] را درنظر می گیریم. اگر حالا، D محدوده ی بین تمام روش های مشاهده شده درنظر بگیریم  را داریم.

 

 پس                         

P 140 :

تعریف . نوشتن و       

                                    

 در جائیکه صعودی و نزولی تمام محدوده ی D از [a,b] می باشد. اولین توضیح در مورد پایین ترین انتگرال از f با مراجعه به g در [a,b] می دهد دومین انتگرال است بالا (صعودی).

 توجه داشته باشید که در جایی که f یک محدوده بین [a,b] و g است در حال افزایش خواهد بود، همچنین توسط (14 . 6)

 

 تعریف : اگر

 F گفته می شود که با رابطه ی g در محدوده ی [a,b] انتگرال گیری می شودو ارزش عمومی صعودی و نزولی انتگرال گیری ها، مشخص می شود توسط :

 

 که این رابطه به نام Riemann و یا (RS) نامیده می شود. که به معنی انتگرال گیری f  با رابطه ی g می باشد.

 تابع g انتگرال گیر نامیده می شود، و تابع f انتگرال ده.

 کلاس تابع قابل انتگرال خواهد بود با رابطه ی g در محدوده [a,b] که توسط R(g.a.b) مشخص می شود.

 بهتر است با کامل کردن تابع RS , f که توسط انتگرال گیری به دست می آید.

 

 (زمانیکه دست راست وجود داشته باشد) و

 

 (برای تمام تابع های f , g ).

 زمانیکه انتگرال گیری RS نزول می کند به انتگرال گیری Riemann . تابع Riemann انتگرال گیری می شود در (123) C1 که تقریباً با انتگرال گیری های قبلی که صعودی و نزولی داشتیم در این جا نداریم اما تعادل دو تابع در واحد 72 . 6 ثابت خواهد شد. دو تابع مفید هستند، مرتبه ی تابع انتگرال Riemann در محدوده ی [a,b] توسط R (a,b) مشخص خواهد شد. و صعودی و نزولی بودن Riemann توسط s(D,f) . s(D,f) جمع بندی خواهد شد.

 مثال ها :

 (i) هر تابع ثابت k یک انتگرال گیری RS با رابطه ی هر صعودی تابع g را دربر دارد. و

 

 این روش از این حقیقت سرچشمه گرفته که، برای تمام

 

  

 (ii) گذاشتن f در تابع تعریف می شود با :

 اگر X گویاست

 اگر X غیرگویاست

 سپس تابع و در هر فاصله. تا زمانیکه g یک تابع صعودی است.

 

 پس، اگر g ثابت باشد،

 در پایان این مرحله ما شرایط اولیه انتگرال گیری Riemann – Stieltjg را بیان کردیم فرض کنید.

 زمانیکه، ما در تابع افزایش انتگرال گیری داشته باشیم، مشخص می شود. ما با این روند داد می دهیم تا جواب قطعی برسیم.

 قضیه 11 . 6 :

 یک شرایط اضطراری که را داشته باشیم می دهد و محدوده ای از [a,b] از D چنین می دهد که :

 

 15 . 6 ) دلیل (اثبات) :

 (i) اگر  اگر

 


دانلود با لینک مستقیم


مقاله انتگرال

سوالات موضوعی نهایی حساب دیفرانسیل و انتگرال

اختصاصی از هایدی سوالات موضوعی نهایی حساب دیفرانسیل و انتگرال دانلود با لینک مستقیم و پر سرعت .

سوالات موضوعی نهایی حساب دیفرانسیل و انتگرال


سوالات موضوعی نهایی حساب دیفرانسیل و انتگرال

نمونه سوالات موضوعی حساب دیفرانسیل و انتگرال

بخش بندی شده و موضوعی با پاسخ سال های 94 تا 95

تعداد صفحات :81

نوع فایل : pdf

 


دانلود با لینک مستقیم


سوالات موضوعی نهایی حساب دیفرانسیل و انتگرال