لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه27
تعاریف و ویژگیهای بنیادی توابع مثلثاتی
- اندازه کمان بر حسب رادیان، دایره مثلثاتی
دانشآموزان اولین چیزی را که در مطالعه توابع مثلثاتی باید بخاطر داشته باشند این است که شناسههای (متغیرهای) این توابع عبارت از اعداد حقیقی هستند. بررسی عباراتی نظیر sin1، cos15، (نه عبارات sin10، cos150،) ، cos (sin1) گاهی اوقات به نظر دانشجویان دورههای پیشدانگاهی مشکل میرسد.
با ملاحظه توابع کمانی مفهوم تابع مثلثاتی نیز تعمیم داده میشود. در این بررسی دانشآموزان با کمانیهایی مواجه خواهند شد که اندازه آنها ممکن است بر حسب هر عددی از درجات هم منفی و هم مثبت بیان شود. مرحله اساسی بعدی عبارت از این است که اندازه درجه (اندازه شصت قسمتی) به اندازه رادیان که اندازهای معمولیتر است تبدیل میشود. در حقیقت تقسیم یک دور دایره به 360 قسمت (درجه) یک روش سنتی است. اندازه زاویهها برحسب رادیان بر اندازه طول کمانهای دایره وابسته است. در اینجا واحد اندازهگیری یک رادیان است که عبارت از اندازه یک زاویه مرکزی است. این زاویه به کمانی نگاه میکند که طول آن برابر شعاع همان دایره است. بدین ترتیب اندازه یک زاویه بر حسب رادیان عبارت از نسبت طول کمان مقابل به زاویه بر شعاع دایرهای است که زاویه مطروحه در آن یک زاویه مرکزی است. اندازه زاویه برحسب رادیان را اندازه دوار زاویه نیز میگویند. از آنجا که محیط دایرهای به شعاع واحد برابر است از اینرو طول کمان برابر رادیان خواهد بود. در نتیجه برابر رادیان خواهد شد.
2- دایره مثلثاتی. در ملاحظه اندازه یک کمان چه بر حسب درجه و چه برحسب رادیان آگاهی از جهت مسیر کمان از نقطه مبدا A1 به نقطه A2 حائز اهمیت است. مسیر کمان از نقطه مبدأ به نقطه مقصد در جهت خلاف حرکت عقربههای ساعت معمولاً مثبت در نظر گرفته میشود. در حالیکه در جهت حرکت عقربههای ساعت منفی منظور میشود.
معمولاً انتهای سمت راست قطر افقی دایره مثلثاتی به عنوان نقطه مبدأ اختیار میشود. نقطه مبدأ دایره دارای مختصات (1,0) خواهد بود. آن را بصورت A=A(1,0) نشان میدهیم. همچنین نقاط D,C,B از این دایره را بترتیب با مختصات B=(0,1)، C=(-1,0)، D=(0,-1) داریم.
دایره مثلثاتی را با S نشان میدهیم. طبق آنچه که ذکر شد چنین داریم:
3- پیچش محور حقیقی به دور دایره مثلثاتی. در تئوری توابع مثلثاتی نگاشت از R مجموعه اعداد حقیقی روی دایره مثلثاتی که با شرایط زیر انجام میشود نقش اساسی را ایفا میکند:
- عدد t=0روی محور اعداد حقیقی با نقطه : Aهمراه میشود.
- اگر باشد آنگاه در دایره مثلثاتی نقطه را به عنوان نقطه مبدا کمان AP1 در نظر گرفته و بر محیط دایره مسیری به طول Tرا در جهت مثبت اختیار میکنیم، نقطه مقصد این مسیر را با Pt نشان داده و عدد tرا با نقطه Ptروی دایره مثلثاتی همراه میکنیم. یا به عبارت دیگر نقطه Ptتصویر نقطه A=P0خواهد بود وقتی که صفحه مختصاتی حول مبدا مختصاتی به اندازه tرادیان چرخانده شود.
- اگر باشد آنگاه با شروع از نقطه Aبر محیط دایره در جهت منفی، مسیری به طول را مشخص میکنیم. فرض کنید که Ptنقطه مقصد این مسیر را نشان دهد و نقطهای متناظر به عدد منفی tباشد.
همانطوریکه ملاحظه شد جوهره نگاشت : P این نکته را میرساند که نیممحور مثبت اعداد حقیقی در جهت مثبت بر روی S میخوابد؛ در حالیکه نیممحور منفی اعداد حقیقی در جهت منفی بر روی S میخوابد. این نگاشت بکبیک نیست: اگر به عدد متناظر باشد یعنی اگر F=P باشد آنگاه این نقطه نیز به اعداد متناظر خواهد بود:
در حقیقت با افزودن مسیری با طول (در جهت مثبت و یا در جهت منفی) به مسیری به طول t مجدداً به نقطه F خواهیم رسید. نگاره وارون کامل P-1(Pt) نقطه Pt با مجموعه تطابق دارد.
توجه: عدد t معمولاً با نقطه pt که متناظر به این عدد است یکی در نظر گرفته میشود، با این حال مسائل باید به موضوع مطروحه نیز توجه کرد.
مثال4-1-1- همه اعداد را که متناظر به نقطه با مختصات است تحت نگاشت P بدست آورید.
تحقیق در مورد تعاریف و ویژگیهای بنیادی توابع مثلثاتی