هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق کامل درباره توربین های گازی

اختصاصی از هایدی دانلود تحقیق کامل درباره توربین های گازی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درباره توربین های گازی


دانلود تحقیق کامل درباره توربین های گازی

 

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :21

 

بخشی از متن مقاله

کلیات

توربین های گازی همانند هر وسیلة گردندة تولید قدرت از یک برنامه طرح ریزی شدة بازرسی دوره ای همراه با تعمیر و تعویض قطعات (در صورت لزوم) برخوردار می باشند تا حداکثر قابلیت دسترسی و اطمینان به واحد را تأمین کند. اهداف این بخش
عبارتند از:

1)کمک به پرسنل تعمیراتی در آشنا شدن با واحد، و اینکار با تفکیک نوع بازرسی ها بر حسب نوع سیستم ها، و در مناسبت های لازم، توصیف مختصری در رابطه با علت بازرسی، و کارهایی که باید انجام شود ارائه می گردد.

2)تعیین اجزاء و قطعاتی که باید به طور دوره ای (متناوب) بین تست های راه اندازی اولیه و بازرسی های بعدی آزمایش شوند.

3)در اینجا فواصل بازرسی بر مبنای نظرات مهندسی و تجارب کسب شده از واحدهای توربین گاز می‌باشد. فواصل زمانی واقعی برای هر توربین گاز خاص باید بر مبنای تجارب کاری استفاده کننده و شرایط محیطی رطوبت، گرد و غبار و اتمسفر خورنده (Corrosive) تعیین شود.

قبل از انجام بازرسی های برنامه ریزی شده یا اخذ اطلاعات در رابطه به نحوة کار توربین، کمپرسور را بر طبق روش تمیز کردن کمپرسور توربین گاز که در بخش 2 (عملیات استاندارد) این کتاب بیان گردیده تمیز کنید. قبل و بعد از هر بازرسی مجموعة کاملی از اطلاعات از جمله مقادیر لرزش باید گرفته و بعنوان مرجع ثبت شود. ثبت بازرسیهای انجام شده و شرح کارهای تعمیراتی اجرا شده بیشتری کمک را در مشخص شدن یک برنامة تعمیراتی خوب برای واحدهای توربین گاز خواهد داشت. برنامة تعمیراتی با امور جزئی شروع شده و متناسب با کارکرد واحد افزایش یافته تا اینکه به یک تعمیر اساسی (Major overhaul) منتهی می شود و سپس سیکل فوق تکرار خواهد شد. انجام بازرسی ها را می توان آنچنان ترتیب داد که مدت زمان خروج واحد و هزینة تعمیراتی برای کارکرد خاصی را کاسته و ضمناً حداکثر زمان دستیابی به واحد را افزایش داد.

 

عواملی که بر مقدار و حجم تعمیرات اثر می گذارند:

فاکتورهایی که بیشترین تأثیر را بر عمر قطعات هر دستگاه معین دارند در شکل 1-1 نشان داده شده اند.

توجه: اثر فاکتورهای تعمیراتی از قبیل نوع سوخت، تعداد استارت ها و نحوة بارگیری در تعمیرات هر واحد، در صورت حضور همة فاکتورها، به مجموع اثرات آنها بستگی دارد.

همچنین باید توجه شود که همچنان که فاکتور تعمیراتی اضافه می شود، زمان بین بازرسیها و تعمیرات اجزاء کاسته شده و ممکن است که تعویض قطعات افزایش یابد.

 

سوخت Fuel

اثر نوع سوخت بر عمر قطعات مربوطه به انرژی تشعشعی در پروسة احتراق و قابلیت پودر شدن سوخت های مایع مختلف می‌باشد. بنابراین گاز طبیعی که نیاز به پودر شدن ندارد، کمترین سطح انرژی تشعشعی را داشته و طولانی ترین عمر قطعات را ایجاد خواهد کرد. گاز طبیعی برای استفادة توربین های گاز در کاربردهای صنعتی سوخت متداول می‌باشد.

بعد از سوخت گاز، به ترتیب سوخت مایع تقطیر شده (Distillate fuel) و سوخت خام (Ceude oil)، با توجه به انرژی تشعشعی بزرگتر و قابلیت پودر شدن بدتر، در کاهش طول عمر قطعات مؤثر می باشند.

همچنانکه در شکل 2-1 نشان داده شده است. همچنین ناخالصی های (کثافات) موجود در سوخت بر فواصل تعمیراتی اثر می گذارند. این موضوع خصوصاً برای سوخت‌های مایعی که در مسیر خود از پمپ ها، اجزاء اندازه گیری و نازل ها عبور می‌کنند و در اثر انجام تعمیرات روی این اجزاء احتمال کثیف شدن سوخت وجود دارد، صحت دارد. ناخالصی های موجود در سوخت گاز می تواند سبب سایش مکانیکی (Errosion) یا خوردگی شیمیایی (Corrosion) در کنترل والوها (Control Valves) و نازل های سوخت شود.

موضوع محدود کننده در کارکرد مداوم با سوخت های مایع، کثیفی نازل های سوخت می‌باشد. سوخت خیلی تمیز می تواند فواصل تعمیراتی را افزایش دهد حال آنکه سوخت کثیف باعث کم شدن آن خواهد شد.

 

میزان تکرار استارت (راه اندازی) Starting frequency

هر توقف و راه اندازی یک توربین گاز، مسیرگاز داغ را در معرض سیکل های حرارتی قابل توجهی قرار می‌دهد. سیستم های کنترل جهت به حداقل رساندن این اثر طراحی و تنظیم شده اند. هرچند که توربین گازی با شرایط مکرر راه اندازی و توقف، عمر قطعات کوتاهتری نسبت به یک واحد مشابه در کارکرد پیوسته خواهد داشت. شکل 3-1 را ببینید.

 

سیکل بارگیری Load Cycle

سیکل بارگیری توربین گاز تا موقعی که پیوسته و مداوم باشد اثرات مخرب کمی بر عمر قطعات خواهد داشت زیرا به تغییرات مکرر و سریع بار نیاز ندارد. شکل 4-1 را ببینید.

محیط Environment

وضعیت هوای ورودی به توربین گاز در صورتی که ساینده یا خورنده باشد می تواند اثر قابل توجهی روی مخارج تعمیراتی داشته باشد. اگر مواد ساینده (نظیر مواد ناشی از طوفان شن) در هوای ورودی باشند باید توجه خاصی به فیلتره کردن ورودی مبذول شود تا این اثر را بتوان به حداقل رساند.

در صورتی که توربین گاز می بایست در یک محیط خورنده (برای مثال محیط نمک دار) به کار افتد، باید توجه دقیقی به موقعیت مکانی وضعیت هوای ورودی و کاربرد مواد مناسب و پوشش های (Coatings) حفاظتی مبذول شود. ضروری است که در طی مراحل برنامه ریزی یک واحد خاص، انواع مواد آلوده کنندة خورنده یا ساینده را تشخیص داده و اقدامات لازم برای به حداقل رساندن آنها انجام شود.

 

تجارب تعمیراتی (Manitenance practices)

آگاهی داشتن بر وضعیت قطعات فقط بر مبنای تخمین ها بوده و بسته به دستگاهها و شرایط کاری خاص تغییر خواهد کرد. هرچند تخمین های مبتنی بر تجارب قبلی می‌تواند در طرح ریزی یک برنامة تعمیراتی بسیار مفید باشد، با جمع آوری اطلاعات واقعی کاری در مورد یک واحد خاص قدم بعدی می بایست تنظیم دوره های بازرسی خوب باشد.

بازرسی اولیه را می توان بر مبنای جدول بازرسی احتراق، جدول بازرسی مسیر گاز داغ و جدول بازرسی اساسی منطبق با واحد خود و نیازهای برآورده شده جهت موقع خروج واحد مندرج در شکل 5-1 برنامه ریزی کرده باید در نظر داشت که نیازهای برآورد شده جهت موقع خروج واحد را می توان برای تخمین سیکل های تعمیراتی به کار برد اگرچه این مقادیر بسته به فاکتورهای زیادی که شرایط کاری یک واحد خاص نصب شده مشخص می‌کند تغییر خواهد کرد.

دوره های زمانی بازرسی بسته به سوخت، سیکل کاری و تجربة تعمیراتی دارندة دستگاه تغییر خواهد کرد. مقدار نفر ساعت (man hour) بازرسی بسته به برنامه ریزی قبلی، دسترسی به قطعات، قابلیت کاری، شرایط جوی، میزان استهلاک مجموعه، نظارت و غیره تغییر خواهد کرد.

متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

/images/spilit.png

دانلود فایل 


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره توربین های گازی

دانلود تحقیق تولید انرژی با توربین های گازی

اختصاصی از هایدی دانلود تحقیق تولید انرژی با توربین های گازی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تولید انرژی با توربین های گازی


دانلود تحقیق تولید انرژی با توربین های گازی

فصل اول

مقدمه ای بر توربین های

GE,MS5001-25MW-Frame5

واحد های نیروگاه گازی از نوع GE ,MS5001-25MW Frame 5 ساخت کشور آمریکا می باشند که هر واحد آن از اجزاء کمپرسور ، اتاق احتراق ، قطعات انتقال ، توربین ، اگزوز، گیربکس و ژنراتور تشکیل می گردند.

توربین گازی یکی از انواع مولد قدرت که بدلیل کاربرد وسیع آن در تولید انرژی در نیروگاههای زمینی و نیز عامل حرکت کشتیهای در حمل و نقل تجاری و نظامی در زندگی انسان اهمیت فراوان یافته است . توربین  گاز در حقیقت نوعی از موتورهای احتراق داخلی محسوب می شود .

در این دستگاه بعوض اینکه اعمال اصلی تراکم ،احتراق و انبساط در داخل عضو واحدی رخ می دهد بصورت متناوب و یکی بعد از دیگری در محفظه های خاصی صورت می گیرد . سه عضو اصلی هر نیروگاه عبارتند از : کمپرسور که جریان پیوسته ماده را فراهم میسازد ، اتاق احتراق که بر انرژی جنبشی گازهای در حال حرکت می افزاید و ماشین انبساط(توربین)که گاز در آن انبساط یافته و انرژی مکانیکی تولید می کند [1] .

هوای محیط مطابق شکل 1-1 بافشار جو از نقطه 1 وارد کمپرسور می شود و در طبقات مختلف آن متراکم و فشار آن بالا می رود ، تا به نقطه 2 برسد .

 

شکل 1-1 سیکل باز یک توربین گاز ساده]2[

هوای فشرده تولید شده آنگاه وارد اتاق احتراق یعنی جائیکه سوخت در آن محترق می گردد ، شده و در آنجا درجه حرارت گاز بالا می رود که باعث می شود حجم گاز با فشار ثابت افزایش یابد و گاز عامل کار برای توربین فراهم گردد . پس از انبساط گاز در توربین و تبدیل مقدار از انرژی گاز به کار مکانیکی روی شافت توربین ، گاز بداخل ناحیه اگزوز میرود و بالاخره بداخل هوای آزاد تخلیه می گردد .

پره هایی که روی روتور کمپرسور نصب شده اند هوا را تحت زاویه معینی بر می گردانند ، تغییر جهتی که به این طریق ایجاد می شود سرعت هوا را کم و فشار آنرا زیاد می کند . اگر سرعت هوا را تقریباً ثابت بماند ، ارتفاع طبقه بعدی می تواند کوچکتر باشد زیرا غلظت هوای فشرده زیاد می شود . هوا که وارد پروانه کمپرسور می شود با گردش پروانه هوا بسمت بیرون یعنی به سوی متفرق کننده (Diffuser) پرتاب می شود . متفرق کننده هوای خارج شده از کمپرسور را با تبدیل سرعت به فشار ، به انرژی (فشار) تبدیل می کند [2] .

در نیروگاههای گازی مقدار گازی مقدار کمی از هوایی وارد کمپرسور می شودبه مصرف احتراق می رسد و بیشترین مقدار آن در اطراف بیرونی شعله فروزان جریان یافته و برای خنک کردن اتاق احتراق پره های توربین و اگزوز استفاده می گردد .

ساختمان هر اتاق احتراق شامل قسمتهایی به شرح زیر است [3] :

الف – آستر(Liner)

سیلندری است که از یک ورقه فلزی مشبک ساخته شده است. سوراخها طوری ترتیب داده شده اند که اختلاف هوا و سوخت به بهترین وجهی انجام بگیرد و در ضمن شعله در وسط استوانه فلزی نگه داشته شود . هوا از قسمت کمپرسور بداخل اتاق احتراق جریان می یابد ، قسمتی از هوا بداخل سیلندر های احتراق راه یافته و در آنجا با سوختی که توسط نازلهایی در قسمت جلویی اتاق احتراق پاشیده می شود ، مخلوط می گردد بقیه هوا بصورت یک پوشش خنک کن و محافظ روی بدنه داخلی و بیرونی اتاق احتراق عمل می کند  .


ب – شمع های جرقه زن(Spark plugs)

مخلوط هوا و سوخت را محترق می سازند . شعله توسط لوله های انتقال عرضی (Crossfire Tubes) به سیلندر دیگر سرایت می کند . شعله در مرکز سیلندربه وجود می آیدو توسط یک بالشتک هوا که سوراخ های لاینر سیلندر وارد می شود احاطه می گردد تا از گرم شدن بیش از حد بدنه سیلندرجلوگیری نماید . قبل از خروج گازها از سیلندر احتراق تمام سوخت بطور کامل می سوزد و گاز انبساط می یابد و به این ترتیب بر سرعت گازها افزوده می شود .

ج – قطعات مکانیکی منتقل گازهای داغ (Transition Pieces) :

گاز پس از انبساط (مرحله ب) با سرعت مکانیکی سریع السیر وارد مکانیکی منتقل کنندۀ گازهای داغ می گردد ،بعد ازعبورگازهای داغ از این قطعات مکانیکی  به قسمت توربین می رسند .

توربین ها که از دو سری نازل مرحله اول و دوم سری پرۀ مرحله اول دارای 120 عدد پره و در مرحله دوم دارای 90 عدد پره می باشند نازلها به گازهای داغ جهت داده تا با زاویه مناسب به سمت پره ها هدایت شوند . پره ها انرژی جنبشی گازها را گرفته و در شافت بصورت حرکت دورانی یا قدرت مکانیکی ظاهر می سازند . دور شافت توسط یک گیربکس از 5100 به 3100 دور در دقیقه رسانده شده تا قابل استفاده در ژنراتور گردد . گاز عبور کرده از پره های مرحله دوم وارد اگزوز شده و سیلندر داخلی بعد از هر 20000 ساعت (850 روز کار مداوم) باید تعویض گردد . بیشترین خوردگی که بر روی سیلندر داخلی مشاهده می گردد مربوط به منطقه نزدیک لوله های انتقال عرضی شعله و لبه خود خود این لوله ها می باشد بطوریکه این مناطق ترک برداشته و در حالت حادتر سوراخهایی در آنها ایجاد می گردد . به وجود آمدن ترک سوراخ در این ناحیه بعلت درجه حرارت بالایی است که در این ناحیه وجود دارد و حدوداً 1200 درجه سانتیگراد است.

...

 

فهرست مطالب

عنوان                                                                                             صفحه

فصل اول مقدمه ای بر توربین هایGE,MS5001-25MW-Frame5  

1-1مقدمه.......................................

فصل دوم- مقدمه ای برخوردگی داغ

...............................................

2-1 خوردگی داغ......................................

2-2 واکنشهای مربوط به تشکیل مواد خورنده در فرایندهای احتراق   

2-2-1 گوگرد....................................

2-2-2 سدیم.....................................

2-2-3 وانادیوم.................................

2-3 تشکیل رسوب......................................

2-4 تأثیر ناخالصیها بر خوردگی داغ...................

2-4-1 اثر ترکیبات وانادیوم.....................

2-4-2 اثر سولفات سدیم..........................

2-4-3 اثر کلرید................................

2-4-4 اثر گوگرد................................

2-5 روشهای مطالعه خوردگی داغ........................

2-5-1 روش مشعلی(Burner Rig Test) ...................

2-5-2 روش کوره ای (Furnace Test) ...................

2-5-3 روش بوته ای(Crucible Test) ...................

2-5-4 روشهای جدید در بررسی آلیاژهای مقاوم به خوردگی داغ 

2-6 مکانیزم های خوردگی داغ..........................

2-6-1 مرحلۀ شروع خوردگی داغ.....................

2-6-2 مراحل پیشرفت خوردگی داغ..................

2-6-2-1 روشهای انحلال نمکی(Fluxing) ..................

2-6-2-2 خوردگی ناشی از جزء رسوب................

2-7 خوردگی نیکل تحت اثر یون سولفات

(Sulphate- Induced Corrosin of Nickel) ..........................

2-7-1 خوردگی نیکل ناشی از سولفات در اتمسفرهای اکسیژن حاویSO3  

2-7-2 خوردگی نیکل ناشی از سولفات ..............

2-8 خوردگی آلیاژهای پایه نیکل و کبالت ناشی از سولفات در حضور اکسیژن حاوی SO3 ............................................

2-8-1-1 خوردگی آلیاژهای نیکل – کرم ناشی از یون سولفات در محیط اکسیژن حاویSO3 ........................................

2-8-1-2 خوردگی آلیاژ "Co-Cr" در مقایسه با آلیاژ "Ni-Cr" در محیط یون سولفات در محیط اکسیژن حاوی SO3 ..................

2-8-1-3 خوردگی آلیاژهای(M=Ni,Cr,..)M-Al در محیط سولفات در حضور

 2-8-2 فلاکسینگ Al2 O3 Cr2 O3 ......................

2-8-3 تأثیرات MoO3,WO3 ........................

2-8-3 تأثیرات مخلوط سولفات......................

2-9 خوردگی داغ ناشی از وانادات......................

2-9-1 مثالهای از مطالعات ترموگراویمتریک .........

2-9-2 روش مشعلی................................

2-9-3 خوردگی داغ ناشی از مخلوط سولفاتها و وانادتها

2-9-4 کنترل ناشی از سولفات و وانادات............

2-10 خوردگی ناشی از نمکهای دیگر .....................

2-10-1 تأثیر کلرید.............................

3-1 پوششهای محافظ در برابر خوردگی داغ................

3-2 تاریخچه بکارگیری پوشش های محافظ.............

3-2-1 پوشش های نفوذی...........................

3-2-2 پوششهای آلومینیدی ساده...................

3-2-3 پوششهای آلومینیدی اصلاح شده...............

3-3 تخریب پوششهای نفوذی.........................

3-3-1 تخریب پوششهای آلومینیدی ساده..............

3-3-2 تخریب پوششهای آلومینیدی اصلاح شده..........

4-1 مقدمه ای بر اکسیداسیون و سولفیداسیون ...........

4-2 محیطهای حاوی واکنشگرهای مخلوط.....................

4-3 تأثیر مراحل آغازین فرآیند اکسیداسیون بر روند کلی

4-4 تشکیل لایه اکسید روی آلیاژهای دوتایی ............

4-4-1 اکسیداسیون انتخابی یک عامل آلیاژی .......

4-4-2 تشکیل همزمان اکسیدهای عامل آلیاژی در پوسته بیرونی  

4-4-2-1 محلولهای جامد اکسید .....................

2-4-2-2 تشکیل متقابل اکسیدهای غیر محلول.........

4-4-3 رفتار اکسیداسیون آلیاژهای حاوی کرم، نیکل و کبالت  

4-4-3-1 فرایند اکسیداسیون آلیاژهایCo-Cr ........

4-4-3-2 فرایند اکسیداسیون آلیاژهای Ni-Cr .......

4-4-3-3 فرایند اکسیداسیون آلیاژهای Fe-Cr .......

4-5 مکانیزم اکسیداسیون آلیاژهای چند جزئی............

4-6 تأثیر بخار آب بر رفتار اکسیداسیون................

4-7 واکنشهای سولفیداسیون ...........................

4-7-1 سولفید آلیاژهای دوتاییNi-Cr ,Co-Cr ,Fe-Cr ....

4-7-1-1 مکانیزم سولفیداسیون آلیاژهای Co –Cr ....

4-7-1-2 مکانیزم سولفیداسیون آلیاژهای Ni-Cr ,Fe-Cr

4-7-1-3 تأثیر عنصر اضافی آلومینیوم بصورت عنصر سوم آلیاژی

4-7-1-3 تأثیر سولفیداسیون مقدماتی روی رفتار اسیداسیون بعدی  

4-8 روند سولفیداسیون دمای بالای فلزات در SO2+O2+SO2 ..

4-8-1 دیاگرام های پایداری فاز اکسیژن – گوگرد ..

4-8-2 خوردگی نیکل در SO2 .......................

4-8-2-1 مکانیزم واکنش در دماهای 500 و 600 درجه سانتی گراد   

4-8-2-2 مکانیزم واکنش در بالای دمای 600 درجه سانتیگراد   

4-8-2-3 وابستگی واکنش سیستم Ni-SO2 به دما ......

4-8-3 خوردگی نیکل در SO3+SO2+O2 ................

4-8-4 خوردگی کبالت در SO2+O2+SO2 ...............

4-8-5 خوردگی آهن در SO2+O2+SO2 .................

4-8-6 خوردگی منگنز در SO2 ......................

4-8-7 خوردگی کرم در SO2 ........................

4-8-8 تأثیرات پوسته های اکسید های تشکیل شده اولیه بر رفتار بعدی قطعه در اتمسفر گازهای محتوی سولفور ...................

4-8-8-1-نفوذ سولفور از میان پوسته های آلومینا(Al2 O3) و کرمیا (Cr2O3) ...............................................

4-8-9 مثالهایی از رفتار خوردگی درجه حرارت بالای آلیاژهای نیکل در محیط های حاویSO2+O2 , SO2 .............................

4-8-9-1 رفتار واکنش آلیاژ Cr % 20-Ni در SO2+O2+SO2   

 

 

152 ص فایل Word


دانلود با لینک مستقیم


دانلود تحقیق تولید انرژی با توربین های گازی