هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد آزمایشگاه عملیات حرارتی و کارگاه عملیات حرارتی

اختصاصی از هایدی تحقیق درمورد آزمایشگاه عملیات حرارتی و کارگاه عملیات حرارتی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 31

 

به نام خدا

گزارش کار

آزمایشگاه عملیات حرارتی و کارگاه عملیات حرارتی

استاد:

مهندس ثابت

دانشجو:

لیلا پری زاده

عملیات حرارتی آنیل کردنAnealing

واژه آنیل دارا ی معنی، مفهوم و کاربرد وسیعی است بدین صورت که به هر نوع عملیات حرارتی که منجر به تشکیل ساختاری بجز مارتنزیت و یا سختی کم و انعطاف پذیری باشد اطلاق می شود.

تقسیم بندی عملیات حرارتی آنیل براساس دمای عملیات به روش سردکردن، ساختار و خواص نهایی.

آنیل کامل:

آنیل کامل عبارت است حرارت دادن فولاد در گسترده دمایی مرحله آستنیت و سپس سردکردن آهسته معمولاً در کوره است. و تحت این شرایط آهنگ سردشدن در محدوده 02/0 درجه سانتیگراد بر ثانیه است. گستره دمایی آستنیته کردن برای آنیل کامل تابع درصد کربن فولاد است. بطورکلی در عملیات آنیل کامل فولادهای هیپویوتکتوئید را در ناحیه تک فازی آستنیت و فولادهای هایپریوتکتوئید را در ناحیه آستنیت سمنتیت حرارت می دهند.

علت آستنیته کردن فولادهای هاپیرتوکتوئید در ناحیه دوفازی آستنیت- سمنتیت این است که سمنتیت پروتکتوئید در این فولاد به صورت کروی و مجتمع شده درآید.

در عملیات آنیل کامل، هدف از آستنیته کردن فولادهای هاپرتوکتوئید در ناحیه دوفازی آستنیت سمنتیت عبار ت از شکستن شبکه پیوست کاربید است و تبدیل آن به ذات ریز و کروی شکل مجزا از یکدیگر است.

نیروی محرکه در این عملیات عبارت از کاهش انرژی فصل مشترک ناشی از کروی شدن ذرات کاربید و در نتیجه کاهش مقدار فصل مشترک آستنیت – کاربید است.

د رعملیات آنیل کامل نه تنها دمای آستنیته کردن بلکه آهنگ سردشدن نیز از اهمیت ویژه ای برخوردار است.

سردکردن آهسته که معادل سردشدن در کوره است باعث می شود که ابتدا فریت و سپس پرلیت از آستنیت بوجود آید بعلت سردشدن آهسته، فریت تشکیل شده دارای دانه های درشت و هم محور بوده و پرلیت دارای فاصله بین لایه ای نسبتاً زیاد( پرلیت خشن یا درشت) است. از جمله مشخصه های مکانیکی این میکروساختار عبارت از کاهش سختی و استحکام و افزایش انعطاف پذیری است. اگر واژه آنیل بدون پسوند استفاده شود منظور همان آنیل کامل است.

آنیل همدما:


دانلود با لینک مستقیم


تحقیق درمورد آزمایشگاه عملیات حرارتی و کارگاه عملیات حرارتی

شبیه‌سازی حرارتی 22 ص

اختصاصی از هایدی شبیه‌سازی حرارتی 22 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

به نام خدا

موضوع:

Simulated Annealing

شبیه‌سازی حرارتی

نام استاد:

جناب آقای دکتر حمیدزاده

نام درس:

شیوه ارائه مطالب علمی و فنی

نام دانشجو:

حسین حقیقت

پاییز 1386

چکیده

در این تحقیق ما به بررسی یکی از روش‌های بهینه‌سازی حل مسئله به نامSimulated Annealing می‌پردازیم. SA در واقع الهام گرفته شده از فرآیند ذوب و دوباره سرد کردن مواد و به همین دلیل به شبیه‌سازی حرارتی شهرت یافته است. در این تحقیق ادعا نشده است که SA لزوماً بهترین جواب را ارائه می‌کند. بلکه SA به دنبال یک جواب خوب که می‌تواند بهینه هم باشد می‌گردد. SA در حل بسیاری از مسائل بخصوص مسائل Np-Complete کاربرد دارد. در پایان روش حل مسئله‌ی فروشنده‌ی دوره گرد در SA بطور مختصر آورده شده است.

فهرست مطالب

عنوان شماره صفحه

1- مقدمه 3

2. SA چیست؟ 5

3- مقایسه SA با تپه‌نوردی 8

4- معیار پذیرش (یک حرکت) 9

5- رابطه‌ی بین SA و حرارت فیزیکی 11

6- اجرای SA 11

7- برنامه سرد کردن 12

1-7. درجه حرارت آغازین 13

2-7. درجه حرارت پایانی 14

3-7. کاهش درجه حرارت در هر مرحله 14

4-7. تکرار در هر دما 14

8- تابع هزینه 14

9- همسایگی 15

10- روش حل TSP با SA 15

11- نتیجه‌گیری 19

منابع 20

1- مقدمه

سیستم‌های پیچیده اجتماعی تعداد زیادی از مسائل دارای طبیعت ترکیباتی را پیش روی ما قرار می‌دهند. مسیر کامیون‌های حمل و نقل باید تعیین شود، انبارها یا نقاط فروش محصولات باید جایابی شوند، شبکه‌های ارتباطی باید طراحی شوند، کانتینرها باید بارگیری شوند، رابط‌های رادیویی می‌بایست دارای فرکانس مناسب باشند، مواد اولیه چوب، فلز، شیشه و چرم باید به اندازه‌های لازم بریده شوند؛ از این دست مسائل بی‌شمارند. تئوری پیچیدگی به ما می‌گوید که مسائل ترکیباتی اغلب پلی‌نومیال نیستند. این مسائل در اندازه‌های کاربردی و عملی خود به قدری بزرگ هستند که نمی‌توان جواب بهینه آنها را در مدت زمان قابل پذیرش به دست آورد. با این وجود، این مسائل باید حل شوند و بنابراین چاره‌ای نیست که به جواب‌های زیر بهینه بسنده نمود به گونه‌ای که دارای کیفیت قابل پذیرش بوده و در مدت زمان قابل پذیرش به دست آیند.

چندین رویکرد برای طراحی جواب‌های با کیفیت قابل پذیرش تحت محدودیت زمانی قابل پذیرش پیشنهاد شده است. الگوریتم‌هایی هستند که می‌توانند یافتن جواب‌های خوب در فاصله مشخصی از جواب بهینه را تضمین کنند که به آن‌ها الگوریتم‌های تقریبی می‌گویند. الگوریتم‌های دیگری نیز هستند که تضمین می‌دهند با احتمال بالا جواب نزدیک بهینه تولید کنند که به آن‌ها الگوریتم‌های احتمالی گفته می‌شود. جدای از این دو دسته، می‌توان الگوریتم‌هایی را پذیرفت که هیچ تضمینی در ارائه جواب ندارند اما براساس شواهد و سوابق نتایج آن‌ها، به طور متوسط بهترین تقابل کیفیت و زمان حل برای مسئله مورد بررسی را به همراه داشته‌اند. به این الگوریتم‌ها، الگوریتم‌های هیوریستیک گفته می‌شود.

هیوریستیک‌ها عبارتند از معیارها، روش‌ها یا اصولی برای تصمیم‌گیری بین چند گزینه خط‌مشی و انتخاب اثربخش‌ترین برای دستیابی به اهداف مورد نظر. هیوریستیک‌ها نتیجه برقراری اعتدال بین دو نیاز هستند: نیاز به ساخت معیار‌های ساده و در همان زمان توانایی تمایز درست بین انتخاب‌های خوب و بد. برای بهبود این الگوریتم‌ها از اواسط دهه هفتاد، موج تازه‌ای از رویکردها آغاز گردید. این رویکردها شامل الگوریتم‌هایی است که صریحاً یا به صورت ضمنی تقابل بین ایجاد تنوع جستجو (وقتی علائمی وجود دارد که جستجو به سمت مناطق بد فضای جستجو می‌رود) و تشدید جستجو (با این هدف که بهترین جواب در منطقه مورد بررسی را پیدا کند) را مدیریت می‌کنند. این الگوریتم‌ها متاهیوریستیک نامیده می‌شوند. از بین این الگوریتم‌ها می‌توان به موارد زیر اشاره کرد:

بازپخت شبیه‌سازی شده

جستجوی ممنوع


دانلود با لینک مستقیم


شبیه‌سازی حرارتی 22 ص

تحقیق و بررسی در مورد پمپ حرارتی

اختصاصی از هایدی تحقیق و بررسی در مورد پمپ حرارتی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

بررسی اثر پمپ حرارتی در کاهش مصرف انرژی برج های جداساز C2

مقادیر زیادی از انرژی برای پالایش اولفین های سبک، مثل اتیلن، در جداسازی محصولات پلیمری با نقطه جوش نزدیک به هم مصرف می شود. از آنجا که جداسازی اتیلن از اتان از نظر نیازهای حرارتی و فنی از مشکل ترین جداسازی هاست. جای زیادی برای بهبود اقتصادی فرایند اتیلن وجود دارد. هدف این مقاله، ارایه یک طرح صنعتی قابل اجرا برای برج های تقطیر یکپارچه حرارتی (HIDiC) برای جداسازی اتیلن از اتان با به کارگیری پمپ حرارتی است. در این مقاله، روشی برای ترکیب حرارتی برج ها به وسیله پمپ های حرارتی برقی؛ که بین مراحل میانی غنی سازی و عاری سازی برج کار می کنند ارایه می شود. برای این کار از یک سیکل پمپ حرارتی در میانه برج استفاده شده است تا هزینه کل برق مصرفی را کاهش دهد. در این بهینه سازی از مدول معادلاتی Aspen Plus بهره گرفته شده است و در تابع هدف تشکیل شده به تاثیر مفاهیم پنالتی حرارتی و تاثیر گلوگاهی افزایش جریان بخار در بهینه سازی توجه و حالت بهینه آن انتخاب شده است

در بهینه سازی سیستم های حرارتی، عموماً به یک مدل کامل از سیستم و استفاده از روشهای عددی نیاز است.در این مقاله، بهینه سازی اگزرژی- اقتصادی سیکل سرمایش تراکمی تبخیری مورد استفاده در سرمایش ساختمان بر پایه نظریه هزینه اگزرژی (Exergetic cost) بکار رفته است. برمبنای این نظریه، هزینه تمام جریانهای داخلی و محصولات سیستم محاسبه می گردند و یک تابع هدف که مجموعه هزین ههای سرمایه گذاری اولیه برای تجهیزات، هزینه های کارکرد، هزینه های تعمیر و نگهداری و انهدام اگزرژی می باشد، معرفی شده است. سپس پارامترهای طراحی سیکل سرمایش در حالت حداقل هزین هها، محاسبه و ارائه شد هاند. این پارامترها شامل بازده موتور الکتریکی، بازده کمپرسور، بازده حرارتی کندانسور و اواپراتور می باشند.

چگونگی انتقال حرارت و ضریب عملکرد در اینگونه از سیست مها به روشهای تحلیلی و تجربی محاسبه شده است . سیال عامل در پمپ حرارتی ، به محض تبخیرشدن، حرارت را از منبع حرارتی گرفته و با میعان خود، آن را به جریان آب موجود در سیستم گرمایش منطقه ای تحویل م یدهد. در این بررسی ضمن مرور ادبیات، در مسیر بازخوانی و تکمیل مطالعات قبلی اگزرژی که در اغلب موارد، ریشه در احصاء برگشت ناپذیر یها دارد؛ یک برنامة رایانه ای به منظور محاسبات اگزرژتیکی تهیه گردیده است. این بررس ی، تمام پارامترهای مهم در طراحی را مورد توجه قرار داده است . نتایج این تحلیل علاوه بر مقایسه با استانداردJIS و تأیید صحت آنها، با یافت ههای تجربی نیز مقایسه شده و تطابق مطلوبی در روند ضرورت بکارگیری پم پهای حرارتی در سیست مها بدست آمده است.

پمپ های حرارتی، یکی از انواع سیستم های تهویه مطبوع برای تأمین گرمایش و سرمایش ساختما ن ها می باشند . پمپ حرارتی در زمستان، گرما را از محیط خارج گرفته و به داخل ساختمان انتقال می دهد و در تابستان، گرمای درون ساختمان را به محیط خارج منتقل می نماید . پمپهای حرارتی بر اساس منبعی که از آن جهت تبادل گرما و سرما استفاده می کنند، به دو دسته اصلی پمپ حرارتی هوایی و زمینی تقسیم می گردند. در این مقاله سیستم پمپ حرارتی هوایی معرفی شده و خواص، کارکرد، مزایا و نکات لازم جهت استفاده از این سیستمها ارائه می گردد

پمپهای حرارتی در تولید گرمایش و سرمایش ، ساختمانهای مسکونی، تجاری ، اداری و صنعتی مورد توجه قرار گرفته اند. نیروی محرکه لازم جهت به حرکت در آوردن کمپرسور می تواند ، توسط موتور الکتریکی و یا یک موتور احتراق داخلی تأمین شود . پمپ حرارتی گاز سوز ، دستگاهی است که انرژی لازم برای سرمایش و گرمایش را از حرکت کمپرسور توسط یک موتور احتراق داخلی گازسوز ، فراهم می گرداند. با توجه به هزینه های متفاوت انرژی الکتریکی و سوخت گاز طبیعی، می توان هزینه های جاری کارکرد هر یک از این دستگاهها را در مناطق مختلف ، تعیین نمود . نظر به فراوانی گاز طبیعی و قیمت کم این سوخت در ایران، استفاده از پمپ های حرارتی گاز سوز می تواند بسیار سودمند باشد . در این مقاله ، پس از تشریح مشخصه های سیستمهای پمپ حرارتی گاز سوز ، هزینه های مصرف انرژی پمپ های حرارتی گاز سوز و الکتریکی برای دو گروه از محصولات شرکتهای تولید کننده این وسیله، مقایسه شده است

قانون دوم ترمودینامیک متضمن این مفهوم است  که یک فرایند فقط در یک جهت معین پیش می رود و در جهت خلاف آن قابل وقوع نیست. این محدودیت برای جهت وقوع یک فرایند, مختصه قانون دوم است.اگرسیکلی متناقض با قانون اول ترمودینامیک نباشد, دلیلی براین نیست که آن سیکل حتماً اتفاق می افتد. همین امر منجر به تنظیم قانون دوم ترمودینامیک شده است. دو بیان کلاسیک از قانون دوم ترمودینامیک وجود دارد که هر دو بیانگر یک مفهوم اساسی هستند: بیان کلوین- پلانک و بیان کلازیوس ,  بیان کلوین- پلانک بر پایه توضیح عملکرد موتورهای حرارتی است وبیان می دارد که غیرممکن است وسیله ای بسازیم که در یک سیکل عمل کند و در عین حال که با یک مخزن تبادل حرارت دارد اثری بجز صعود وزنه داشته باشد. این بیان از قانون دوم ترمودینامیک در بر گیرنده این مضمون است که غیر ممکن است که یک موتور حرارتی مقدار مشخصی حرارت را از جسم درجه حرارت بالا دریافت کند و همان مقدار نیز کار انجام دهد. بیان کلازیوس نیز یک بیان منفی است و اعلام می دارد که غیر ممکن است وسیله ای بسازیم که در یک سیکل عمل کند و تنها اثر آن انتقال حرارت از جسم سردتر به جسم گرمتر باشد. این بیان بر پایه توضیح عملکرد پمپهای حرارتی می باشد و دربرگیرنده این مفهوم است که  نمی توان یخچالی ساخت که بدون کار ورودی عمل کند. هر دو بیان کلاسیک از قانون دوم ترمودینامیک نوعاً بیانهای منفی هستند و اثبات بیان منفی ناممکن است. درباره قانون دوم ترمودینامیک گفته میشود  "هر آزمایش مربوطی که صورت گرفته به طور مستقیم یا غیرمستقیم ﻤﺆید قانون دوم بوده و هیچ آزمایشی منجر به نقض قانون دوم نشده است. همانگونه که ذکر شد تنها گواه ما بر صحت قانون دوم ترمودینامیک آزمایشات گوناگونی است که همگی درستی این قانون را ﺘﺄیید می کنند. با این همه در ترمودینامیک کلاسیک سعی می کنند نشان دهند که اثبات معادل بودن دو بیان کلوین- پلانک و کلازیوس دلیلی بر صحت قانون دوم ترمودینامیک است. در حالیکه این امر درستی قانون دوم را اثبات نمی کند. در اثبات اینکه دو بیان فوق الذکر معادل یکدیگرند از یک مدل منطقی بهره جسته می شود که می گوید: " دو بیان,  معادل هستند اگر صحت هر بیان منجر به صحت بیان دیگر گردد  و اگر نقض هر بیان باعث نقض بیان دیگر شود."  

 

 

   

 

 

 

 

در ترمودینامیک کلاسیک ,معادل بودن دو بیان کلوین- پلانک و کلازیوس  با این آزمایش ذهنی استنتاج می شود. در شکل نشان داده می شود که نقض بیان کلازیوس منجر به نقض بیان کلوین- پلانک می شود. وسیله سمت چپ ناقض بیان کلازیوس است. زیرا که یک پمپ حرارتی است که نیازی به کار ندارد. وسیله سمت راست یک موتور حرارتی است.  در اینجا به دلیل اینکه انتقال حرارت خالص با منبع درجه حرارت پایین وجود ندارد پس پمپ حرارتی و موتور حرارتی و منبع درجه حرارت بالا مشتمل بر یک سیکل ترمودینامیکی است اما فقط با یک مخزن تبادل حرارت دارد  بنابراین نتیجه می شود که  ناقض  بیان کلوین- پلانک می باشد. و گفته می شود تساوی کامل این دو بیان هنگامی اثبات می شود که نقض بیان کلوین- پلانک نیز موجب نقض بیان کلازیوس بشود. با این وصف باید بپذیریم که دو بیان فوق, منتج از یکدیگر هستند. " در اثبات معادل بودن چند گزاره اگر عبارتی بصورت B ↔A   بیان شده باشد آنگاه B  نتیجه A است و A هم نتیجه B , بعبارت دیگر  AوB معادل یکدیگر هستند, بالعکس اگر A وB  معادل یکدیگر باشند,  هریک از آنها نتیجه دیگری است.

 

 

 

 

 

 


دانلود با لینک مستقیم


تحقیق و بررسی در مورد پمپ حرارتی

تحقیق و بررسی در مورد پمپ حرارتی20

اختصاصی از هایدی تحقیق و بررسی در مورد پمپ حرارتی20 دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 7

 

پمپ حرارتی

 

×      هدف:

بررسی سیکل تراکمی و اثر پارامترهای مختلف بر عملکرد آن و مقایسه سیکل واقعی با سیکل ایده آل

×      خلاصه:

پمپ حرارتی وسیله است که به دو منظور از آن استفاده می شود یکی به عنوان یک دستگاه سرماساز و دیگر به عنوان یک دستگاه گرم کننده.

یک پمپ حرارتی از اجزایی همچون کمپرسور،اواپراتور،کندانسور،مبرد و شیر فشار شکن تشکیل شده است. مبرد در اغلب این پمپ ها R-12 می باشد. در یک پمپ حرارتی مبرد کم فشار وارد اواپراتور شده و در یک تحول فشار ثابت حرارت محیط راجذب کرده و سپس وارد کمپرسور شده و در یک تحول آیزنتروپیک فشارش توسط کمپرسورافزایش می یابد تا حرارتی را که جذب کرده در کندانسور پس دهد که این تحول نیز آدیاباتیک است. سپس مبرد وارد شسر فشار شکن شده ودر یک تحول آنتالپی ثابت ( h3=h4 ) که نقطه 3 نقطه ورودی به شیر و نقطه 4 نقطه خروجی از شیر است. کاهش فشارداده و دوباره وارد اواپراتور شده و سیکل را از ابتدا شروع می کند. هر پمپ حرارتی دارای یک ضریب عملکرد است که در صورت استفاده از پمپ به صورت یک گرم کننده یا سرد کننده به صورت زیر محاسبه می شود:

در حالتی که از آن به عنوان گرم کننده استفاده کنیم

و حال اگر ازآن به عنوان سرد کننده استفاده کنیم

که qH گرمای منتقله در کندانسور و ql گرمای منتقله در کندانسور و wc کار ورودی کمپرسور بوده که هر سه بر واحد جرم می باشند.

×      مقدمه:

گرما عبارت است از حرکت مولکولی. تمام اشیاء از مولکولهای بسیار کوچکی تشکیل یافته اند که بطور دائم و با سرعت در حرکتند.هر چه گرما کاهش یابد حرکت مولکولی نیز کاهش پیدا می کند.و اما سرما واژه ایست نشان دهنده حرارت کم،سرما خود به خود تولید نمی شود بلکه حرارتی است که از جسم گرفته می شود و این حالت سرما نام دارد. حرارت همیشه از یک جسم گرمتر به سوی یک جسم سردتر حرکت می کند یعنی از گرمای بیشتر به سمت گرمای کمتر جریان می یابد. حال اگر بخواهیم این عمل را برعکس کنیم و حرارت را از یک جسم با دمای پایین تر گرفته و آن را سردتر کرد با ید از یک پمپ حرارتی استفاده کنیم.کلیه سیستمهای تبرید پمپ حرارتی می باشند که حرارت را ار یک سطح با درجه حرارت پائین جذب وآن را به یک سطح با درجه حرارت بالا تخلیه می کنند.

عمل سرد کردن یا صنعت حفظ مواد غذلیی با استفاده از سرما برای اولین بار در قرن هجدهم از اهمیت اقتصادی برخوردار گردید. یخ مصنوعی برای اولین بار بطور تجربی در سال 1820 ساخته شد ولی تکامل تولید یخ مصنوعی تا سال 1834 بطول انجامید جاکوب پرکینز(jacob perkins) مهندس آمریکایی برای اولین بار دستگاهی برای تولید یخ مصنوعی اختراع کرد که پیشرو دستگاههای سرد کننده کمپرسی و مدرن امروزی است.گر چه میشل فاراده (michel faraday) در سال 1824 اصول سرد کردن از نوع جذبی را کشف نمود ولی در سال 1855 یک مهندس آلمانی اولین مکانیزم سرد کننده از نوع جذبی را تولید کرد. سیستم مکانیکی سرد کننده خانگی برای اولین بار در سال 1910 به وجود آمد.ج.ام.لارسن در سال 1913 یک دستگاه خانگی دستی ساخت و بالاخره در سال 1918 اولین یخچال اتوماتیک ساخت کارخانه کلویناتور وارد بازارهای آمریکا گردید.

از دستگاهای سرد کننده مکانیکی بعنوان یخچال خانگی ،سرد کننده های تجارتی،تهویه مطبوع،تنظیم کننده رطوبت هوا،سرد کننده مواد غذایی،خنک کننده در مراحل مختلف تولید و موارد دیگر استفاده می شود.

پمپ های حرارتی اغلب در اشکال وسیعی به کار می روند. چهار نوع از این پمپ ها را به این ترتیب می توان نام برد:

×      پمپ های حرارتی یکپارچه با سیکل برگشت پذیر

×      پمپ های حرارتی ناحیه ای برای ساختمانهای متوسط و برزگ

×      پمپ های حرارتی با کندانسور دو دسته ای

×      پمپ های حرارتی صنعتی

هر چهار نوع کاربردهای مشترکی دارند اما هر یک پاسخگوی شرایط به خصوصی می باشند. برای درک چگونگی کار یک دستگاه سرد کننده، دانستن خصوصیات فیزیکی و حرارتی مکانیزم بکار رفته برای گرفتن حرارت ،دارای اهمیت زیادی است.حال به توضیحی کوتاه در مورد عمل سرد کردن در یک یخچال می پردازیم.

در یک یخچال حرارت از لا به لای لا یه ها ی عایق و هنگامی که درب یخچال باز می شود به درون آن نشت می کند. این حرارت درون یخچال بوسیله واسطه خنک کننده که درون سیستم سرد کننده(اواپراتور) وجود دارد جذب می شود.(شکل 1) واسطه سرد کننده(مایع سرما ساز) در هنگام جذب حرارت از مایع به حالت گاز تغییر شکل پیدا می کند. پس از جذب حرارت و تبدیل واسطه خنک کننئه به گاز،این گاز توسط تلمبه به خارج دستگاه سرد کننده هدایت می شود.سپس این گاز فشرده شده و حرارت آن در اثر فشار زیاد و سرد شدن در کندانسور گرفته می شود. واسطه سرد کننده آن قدر به جریان خود و انجام سیکل ادامه می دهد تا درجه حرارت مطلوب در درون یخچال بوجود آید و پس از آن پمپ حرارتی از کار باز می ایستد

کمپرسور h1-h2s می باشد. قابل توجه است که با در نظر گرفتن قانون اول ترمودینامیک(w=h1-h2+q) ،h1-h2 امکان دارد از کار ورودی به کمپرسور کمتر یا بیشتر باشد. اگر q مثبت باشد یعنس حرارت از محیط به کمپرسور انتقال یابد،h1-h2 کمتر از کار ورودی است و اگر q منفی باشد حرارت از کمپرسور به محیط منتقل شود،h1-h2 بیشتر از کار ورودی کمپرسور است.

فرایند3-2:

در این فرایند ابتدا بخار super heat و سپس بترتیب تقطیر و دبی می شود. در اینجا مقدار گرما بر واحد جرم h2-h3 از مبرد به آب منتقل می شود که این خروجی قابل استفاده پمپ حرارتی است.

فرایند4-3:

فرایند انتالپی ثابت (h3=h4). البته بدلیل انتقال حرارت در شیر انبساط، مقدار h4 کمی بیشتر از مقدار h3 است که از این مقدار صرفنظر می نمائیم. در فرایند انبساط(4-3) R-12 از مایع فشار بالا به مایع اشباع فشار پایین با درصدی از بخار می شود.

فرایند1-4:

با انتقال حرارت از محیط به R-12 در اواپراتور، آنتالپی R-12 ازh4 به h1 تبدیل می شود و سوپر هیت می گردد. حرارت منتقله(بر واحد جرم) مساوی h1-h4 است.

قابل توجه است که افت فشار در لوله های اواپراتور ناچیز است.

اما در مورد ضریب عملکرد با توجه به داده های آزمایش می توان این نتیجه گیری را کرد که با افزایش دمای اواپراتور ظرفیت و راندمان سیستم تبرید به طور قابل ملاحظه ای بهبود می یابد، بدیهی است یک سیستم تبرید بایستی همواره برای کار در بالاترین دمای ممکن اواپراتور طراحی شده باشد. هر چند تاثیر تغییر دمای تقطیر بر روی ظرفیت و راندمان سیکل تبرید به مراتب کمتر از تاثیر تغییرات دمای اواپراتور باشد.عملا نباید آن را ناچیز شمرد.

در مورد علل خطا در آزمایش می توان به عواملی همچون خطای شخص، خطای محیط،خطای وسایل مورد استفاده قرار گرفته در آزمایش و خطای محاسباتی اشاره کرد.

به عنوان مثال می توان به انتقال خرارت در وسایل آزمایش به عنوان یک عامل خطا اشاره کرد. این انتقال حرارت را در لوله ها به دلیل عایق بندی میتوان صرفنظر کرد ولی در کمپرسور که یک فرایند آیزنتروپیک را طی می کند نمی توان صرفنظر کرد. یا در 3 مرتبه اول که ما آزمایش را با فن خاموش انجام دادیم برفکهای موجود بر روی اواپراتور مانع انتقال مناسب حرارت از محیط به مبرد می شد در موقع خواندن عدد از روی وسایل به دلیل اینکه عقربه ای بودند و با دقتهای بالایی درجه بندی نشده بودند موقعی که عقربه بین دو دجه بود باید عدد پایینی یا بالایی را می خواندیم که این خود نیز باعث خطا می شد. و دیگر می توان به عامل صروصدای موتوهای بنزینی، دیزلی و کمپرسور اشاره کرد که در موقع انتفال اعداد خوانده شده به کسی که در حال نوشتن اعداد است دچار خطا شده و اعداد کمی بالا و پایین می شوند.

برای بهبود کیفیت دز این آزمایش باید از دستگاههای اندازه گیری دیجیتالی بجای دستگاههای مکانیکی استفاده کرد. و اینکه یک روتاتور برای محاسبه دبی آب در این دستگاه قرار داده شود.

و کمپرسور را عایق بندی کرده تا حرارت منتقل نشود.

قانون دوم ترمودینامیک متضمن این مفهوم است  که یک فرایند فقط در یک جهت معین پیش می رود و در جهت خلاف آن قابل وقوع نیست. این محدودیت برای جهت وقوع یک فرایند, مختصه قانون دوم است.اگرسیکلی متناقض با قانون اول ترمودینامیک نباشد, دلیلی براین نیست که آن سیکل حتماً اتفاق می افتد. همین امر منجر به تنظیم قانون دوم ترمودینامیک شده است. دو بیان کلاسیک از قانون دوم ترمودینامیک وجود دارد که هر دو بیانگر یک مفهوم اساسی هستند: بیان کلوین- پلانک و بیان کلازیوس ,  بیان کلوین- پلانک بر پایه توضیح عملکرد موتورهای حرارتی است وبیان می دارد که غیرممکن است وسیله ای بسازیم که در یک سیکل عمل کند و در عین حال که با یک مخزن تبادل حرارت دارد اثری بجز صعود وزنه داشته باشد. این بیان از قانون دوم ترمودینامیک در بر گیرنده این مضمون است که غیر ممکن است که یک موتور حرارتی مقدار مشخصی حرارت را از جسم درجه حرارت بالا دریافت کند و همان مقدار نیز کار انجام دهد. بیان کلازیوس نیز یک بیان منفی است و اعلام می دارد که غیر ممکن است وسیله ای بسازیم که در یک سیکل عمل کند و تنها اثر آن انتقال حرارت از جسم سردتر به جسم گرمتر باشد. این بیان بر پایه توضیح عملکرد پمپهای حرارتی می باشد و دربرگیرنده این مفهوم است که  نمی توان یخچالی ساخت که بدون کار ورودی عمل کند. هر دو بیان کلاسیک از قانون دوم ترمودینامیک نوعاً بیانهای منفی هستند و اثبات بیان منفی ناممکن است. درباره قانون دوم ترمودینامیک گفته میشود  "هر آزمایش مربوطی که صورت گرفته به طور مستقیم یا غیرمستقیم ﻤﺆید قانون دوم بوده و هیچ آزمایشی منجر به نقض قانون دوم نشده است. همانگونه که ذکر شد تنها گواه ما بر صحت قانون دوم ترمودینامیک آزمایشات گوناگونی است که همگی درستی این قانون را ﺘﺄیید می کنند. با این همه در ترمودینامیک کلاسیک سعی می کنند نشان دهند که اثبات معادل بودن دو بیان کلوین- پلانک و کلازیوس دلیلی بر صحت قانون دوم ترمودینامیک است. در حالیکه این امر درستی قانون دوم را اثبات نمی کند. در اثبات اینکه دو بیان فوق الذکر معادل یکدیگرند از یک مدل منطقی بهره جسته می شود که می گوید: " دو بیان,  معادل هستند اگر صحت هر بیان منجر به صحت بیان دیگر گردد  و اگر نقض هر بیان باعث نقض بیان دیگر شود."  

 

 

   

 

 

 

 


دانلود با لینک مستقیم


تحقیق و بررسی در مورد پمپ حرارتی20