
نمونه سوال داده کاوی و انبار داده ها نیمسال دوم 92-91 با پاسخنامه کلیدی
امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد.
داده کاوی یکی از مهمترین روش ها ی کشف دانش است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.داده کاوی را تحلیل گران با اهداف گوناگونی از قبیل کلاس بندی, پیش بینی, خوشه بندی ,تخمین انجام می دهند. برای کلاس بندی, مدل هاو الگوریتم هایی مانند قاعده ی بیز, درخت تصمیم, شبکه ی عصبی, الگوریتم ژنتیک مطرح شده است.برای پیش بینی مدل رگرسیون خطی ومنطقی و برای خوشه بندی الگوریتم های سلسله مراتبی و تفکیکی, وبرای تخمین مدل های درخت تصمیم و شبکه ی عصبی مطرح می شود. در فصل دوم و سوم با الگوریتم ژنتیک که یکی از الگوریتم های داده کاوی و با شبکه ی عصبی که یکی از مدل های داده کاوی هستند آشنا می شویم .درفصل چهارم به محاسبات نرم و برخی از اجزای اصلی ان و نقش آنها در داده کاوی می پردازیم.
در فصل پنجم با ابزارهای داده کاوی آشنا می شویم . برای داده کاوی ابزارهای متنوعی وجود دارد. می توان ابزارداده کاوی را با تطبیق آن ابزار با داده های مسئله و با توجه به محیط داده ای که می خواهید از آن استفاده کنید، و امکاناتی که آن ابزار دارد انتخاب کنید.وسپس به داده کاوی با SQLSERVER2005 می پردازیم .ودرفصل ششم به داده کاوی با SQL SERVER2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان پرداختیم.
این مقاله به صورت ورد (docx ) می باشد و تعداد صفحات آن 217صفحه آماده پرینت می باشد
چیزی که این مقالات را متمایز کرده است آماده پرینت بودن مقالات می باشد تا خریدار از خرید خود راضی باشد
مقالات را با ورژن office2010 به بالا بازکنید
عنوان مقاله : نگاهی بر داده کاوی و کشف قوانین وابستگی
قالب بندی : Word
شرح مختصر : با افزایش سیستمهای کامپیوتر و گسترش تکنولوژی اطلاعات , بحث اصلی در علم کامپیوتر از چگونگی جمع آوری اطلاعات به نحوه استفاده از اطلاعات منتقل شده است . سیستمهای داده کاوی ,این امکان را به کاربر می دهند که بتواند انبوه داده های جمع آوری شده را تفسیر کنند و دانش نهفته در آن را استخراج نمایند . داده کاوی به هر نوع کشف دانش و یا الگوی پنهان در پایگاه داده ها اطلاق می شود . امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده ، محققان بسیاری را به خود جذب کرده است . در این تحقیق ابتدا نگاه کلی بر داده کاوی ، استراتژیهای داده کاوی و… داریم ، سپس مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتمهای موجود برای آن داشتیم . سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم .
فهرست :
چکیده
مقدمه
کشف دانش در پایگاه داده
آیا داده کاوی برای حل مسائل ما مناسب است؟
جمع آوری داده ها
بکارگیری نتایج
استراتژیهای داده کاوی
پیش گویی Perdiction
Unsupervised Clustering دسته بندی بدون کنترل
تکنیکهای داده کاوی تحت کنترل
شبکه عصبی
برگشت آماری
قوانین وابستگی
الگوریتم Apriori
الگوریتم Aprior TID
الگوریتم partition
الگوریتم های MaxEclat,Eclat
الگوریتم با ساختار trie
الگوریتم fp-grow
ساخت fp- tree
Fp-tree شرطی
الگوریتم برداری
نگهداری قوانین وابستگی
الگوریتم کاهشی
با افزایش سیستمهای کامپیوتر و گسترش تکنولوژی اطلاعات , بحث اصلی در علم کامپیوتر از چگونگی جمع آوری اطلاعات به نحوه استفاده از اطلاعات منتقل شده است . سیستمهای داده کاوی ,این امکان را به کاربر می دهند که بتواند انبوه داده های جمع آوری شده را تفسیر کنند و دانش نهفته در آن را استخراج نمایند . داده کاوی به هر نوع کشف دانش و یا الگوی پنهان در پایگاه داده ها اطلاق می شود . امروزه داده کاوی به عنوان یکی از مهمترین مسائل هوش مصنوعی و پایگاه داده ، محققان بسیاری را به خود جذب کرده است . در این تحقیق ابتدا نگاه کلی بر داده کاوی ، استراتژیهای داده کاوی و… داریم ، سپس مسأله کشف قوانین وابستگی در پایگاه داده را به تفضیل بررسی کردیم و نگاهی به الگوریتمهای موجود برای آن داشتیم . سپس مسأله کشف قوانین وابستگی در پایگاه داده های پویا را مورد بحث قرار دادیم و الگوریتم های ارائه شده مربوطه را مطرح کردیم .
فهرست :
چکیده
مقدمه
کشف دانش در پایگاه داده
آیا داده کاوی برای حل مسائل ما مناسب است؟
جمع آوری داده ها
بکارگیری نتایج
استراتژیهای داده کاوی
پیش گویی Perdiction
Unsupervised Clustering دسته بندی بدون کنترل
تکنیکهای داده کاوی تحت کنترل
شبکه عصبی
برگشت آماری
قوانین وابستگی
الگوریتم Apriori
الگوریتم Aprior TID
الگوریتم partition
الگوریتم های MaxEclat,Eclat
الگوریتم با ساختار trie
الگوریتم fp-grow
ساخت fp- tree
Fp-tree شرطی
الگوریتم برداری
نگهداری قوانین وابستگی
الگوریتم کاهشی