هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه مبدل های حرارتی

اختصاصی از هایدی دانلود پایان نامه مبدل های حرارتی دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه مبدل های حرارتی


دانلود پایان نامه مبدل های حرارتی

مبدل های حرارتی تقریباً پرکاربرترین عضو در فرآیندهای شیمیایی اند و می توان آن ها را در بیشتر واحدهای صنعتی ملاحظه کرد. آنها وسایلی هستند که امکان انتقال انرژی گرمایی بین دو یا چند سیال در دماهای مختلف را فراهم می کنند. این عملیات می تواند بین مایع- مایع ، گاز- گاز و یا گاز- مایع انجام شود.مبدل های حرارتی به منظور خنک کردن سیال گرم و یا گرم کردن سیال با دمای پایین تر و یا هر دو مورد استفاده قرارمی گیرند.
مبدل های حرارتی در محدوده وسیعی از کاربردها استفاده می شوند . این کاربردهای شامل نیروگاه ها ، پالایشگاه ها ، صنایع پتروشیمی،صنایع ساخت و تولید ،صنایع فرآیندی ، صنایع غذایی و دارویی ، صنایع ذوب فلز ، گرمایش ، تهویه مطبوع ، سیستم های تبرید و کاربردهای فضاییمیباشند.مبدل های حرارتی در دستگاه های مختلف نظیر دیگ بخار ، مولد بخار ، کندانسور، اواپراتور، تبخیر کننده ها ، برج خنک کن ، پیش گرم کن فن کویل ، خنک کن و گرم کن روغن ، رادیاتور ها ، کوره ها و ... کاربرد فراوان دارند.
صنایع بسیاری در طراحی انواع مبدل های حرارتی فعالیت دارند و هم چنین ، دروس متعددی در کالج ها و دانشگاه ها با نام های گوناگون در طراحی مبدل های حرارتی ارائه می گردد. محاسبات مربوط به مبدل ها کاری طولانی و گاهی خسته کننده است. مثلاً طراحی یک مبدل برای یک عملیات به خصوص نیاز به حدس های زیادی دارد که با استفاده از آن ها و طبق استانداردها می توان اندازه های یک مبدل مناسب را پیدا کرد. اما با استفاده از برنامه های کامپیوتری تمام این محاسبات توسط کامپیوتر انجام میشود و طراح برای طراحی تنها باید شرایط عملیاتی و خواص سیالات حاضر در عملیات را وارد کند. نرم افزارهای Aspen B-jac و HTFS از این موارد هستند. این نرم افزارها شامل برنامه هایی می شوند که توانایی انجام چنین محاسباتی را دارند.
در این تحقیق ابتدا توضیحاتی در مورد مبدل های حرارتی و اصول طراحی آنها بیان گردیده و در ادامه به معرفی و آشنایی با چند نرم افزار طراحی مبدلها پرداخته شده است.

فهرست مطالب 

پیشگفتار 3

دسته بندی مبدل های حرارتی 5
بر اساس نوع و سطح تماس سیال سرد و گرم 5
بر اساس جهت جریان سیال سرد و گرم 6
بر اساس مکانیزم انتقال حرارت بین سیال سرد و گرم 8
بر اساس ساختمان مکانیکی و ساختار مبدل ها 9
اصول طراحی مبدل های حرارتی 20
1- تعیین مشخصات فرآیند و طراحی 24
2- طراحی حرارتی و هیدرولیکی 28
3- طراحی مکانیکی 33
4- ملاحظات مربوط به تولید و تخمین هزینه ها 37
5- فاکتورهای لازم برای سبک و سنگین کردن 39
6- طراحی بهینه 40
7- سایر ملاحظات 40
نرم افزار HTFS ( شبیه سازی و طراحی مبدل های حرارتی ) 41
TASC، طراحی حرارتی ، بررسی عملکرد و شبیه سازی مبدلهای پوسته و لوله 42
FIHR، شبیه سازی کوره ها با سوخت گاز و مایع 42
MUSE، شبیه سازی مبدلهای صفحه ای پره دار 43
TICP، محاسبه عایقکاریحرارتی 43
PIPE، طراحی، پیش بینی و بررسیعملکرد خطوط لوله 44
ACOL، شبیه سازی وطراحی مبدلهای حرارتی هواخنک 44
FRAN، بررسی و شبیه سازی مبدلهای نیروگاهی 45
TASC، طراحی حرارتی ، بررسی و شبیه سازی مبدلهای حرارتی پوسته و لوله 46
توانایی ها 46
کاربرد در فرآیند 47
مشخصات فنی و توانایی ها 48
خواص فیزیکی 49
بررسی ارتعاش ناشی از جریان 49
خروجی 50
ACOL، شبیه سازی وطراحی مبدلهای حرارتی هواخنک 52
طراحی 52
کاربرد در فرآیند 53
مشخصات فنی و توانایی 54
نتایج خروجی 56
PIPESYS ، شبیه سازی خطوط لوله 58
امکانات و توانایی ها 59
نمونه هایی از کاربرد PIPESYS در عمل 60
نرم افزار Aspen B-jac 61
آشنایی با نرم افزار Aspen Hetran 63
نحوه کار نرم افزار Hetranدر حالت طراحی 65
محیط نرم افزار Aspen Hetran 72
تعریف مساله ( Problem Definition ) 73
اطلاعات خواص فیزیکی ( Physical property data ) 83
ساختار مبدل ( Exchanger Geometry ) 94
داده های طراحی ( Design Data) 106
تنظیمات برنامه ( Program Options ) 113
نتایج ( Results ) 117
خلاصه وضعیت طراحی 118
خلاصه وضعیت حرارتی 121
خلاصه وضعیت مکانیکی 125
جزئیات محاسبه ( Calculation Details ) 127
آشنایی با نرم افزار Aerotran 129
روش های طراحی نرم افزار Aerotran 131
آشنایی با نرم افزار Teams 133
برنامه Props 136
برنامه Qchex 138
برنامه Ensea 140
برنامه Metals 142
برنامه Primetal 144
برنامه Newcost 147
منابع و مواخذ 149


دانلود با لینک مستقیم


دانلود پایان نامه مبدل های حرارتی

مقاله ترجمه شده رسوب کردن سیلیکا در مبدل های حرارتی زمین-گرمایی و اثر آن بر افت فشار و بازده: نیروگاه دوگانه وایراکی ، نیوزیلند

اختصاصی از هایدی مقاله ترجمه شده رسوب کردن سیلیکا در مبدل های حرارتی زمین-گرمایی و اثر آن بر افت فشار و بازده: نیروگاه دوگانه وایراکی ، نیوزیلند دانلود با لینک مستقیم و پر سرعت .

پرداخت اینترنتی - دانلود سریع - اطمینان از خرید

پرداخت و دانلود

مبلغ قابل پرداخت 10,000 تومان
عملیات پرداخت با همکاری بانک انجام می شود
کدتخفیف:

درصورتیکه برای خرید اینترنتی نیاز به راهنمایی دارید اینجا کلیک کنید







دانلود با لینک مستقیم


مقاله ترجمه شده رسوب کردن سیلیکا در مبدل های حرارتی زمین-گرمایی و اثر آن بر افت فشار و بازده: نیروگاه دوگانه وایراکی ، نیوزیلند

مقاله مبدل های نوری جریان‎

اختصاصی از هایدی مقاله مبدل های نوری جریان‎ دانلود با لینک مستقیم و پر سرعت .

مقاله مبدل های نوری جریان‎


مقاله مبدل های نوری جریان‎

دانلود مقاله مبدل های نوری جریان‎

این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد

قالب: Word

تعداد صفحات: 40

توضیحات:

برای سنجش جریان تأسیسات فشار قوی و خطوط انتقال نیرو، سنجش خطا و… می توان از مبدل های نوری جریان استفاده نمود. این مبدل ها بر اساس اصول و قوانین فیزیکی عمل می نمایند و به عنوان جایگزین CT های معمولی مطرح گردیده اند. گرفته است. همچنین برخی از انواع مختلف چنین مبدل هایی معرفی شده اند و ویژگی های عملکردی آن ها در مقایسه با ترانسفورماتورهای جریان معمولی و نسل جدید CT ها مورد ارزیابی قرار گرفته است.

فهرست:

مقدمه

فصل اول: کلیات

هدف

سیستم های مبدل جریان سنتی

سیستم های مبدل جریان نوری

هسته مغناطیسی و سنجش نوری

توده فعال نوری پیرامون هادی

فیبر نوری پیرامون هادی

حسگر شاهد

چرا سیستم های مبدل جریان نوری

فصل دوم: اصول و مبانی سنجش نوری

سنجش جریان از طریق اندازه گیری میدان مغناطیسی

سنجش نوری جریان نوری جریان و میدان الکترو مغناطیسی

شرحی بر پلاریزاسیون (قطبش امواج)

انواع قطبش

حالت قطبش

فصل سوم: پدیده اثر فارادی

اثر فارادی چیست

شرح عملکرد

کاربرد های اثر فارادی

فصل چهارم: مبدل های جریان تمام نوری

اصول اندازه گیری جریان در otc ها

محاصبه چرخش فارادی

انواع سنسور های تمام نوری جریان

سنسور های سنتی

سنسور های جدید سولنئیدی

طراحی و شبیه سازی

نرم افزار comsol

شبیه سازی

شبیه سازی ساختار سنتی

شبیه سازی ساختار سرسنجش گر سولنئیدی

رابطه بین اثر فارادی و تست جریان

مزیت های مبدل های نوری جریان و قیاس روش ها

فصل پنجم: نتیجه‌گیری و پیشنهادات

نتیجه گیری

پیشنهاد

منابع و ماخذ


دانلود با لینک مستقیم


مقاله مبدل های نوری جریان‎

تحقیق : مبدل های حرارتی

اختصاصی از هایدی تحقیق : مبدل های حرارتی دانلود با لینک مستقیم و پر سرعت .

تحقیق : مبدل های حرارتی ، با فرمت ورد 152 صفحه

فهرست مطالب:

پیشگفتار......3

دسته بندی مبدل های حرارتی. 5

بر اساس نوع و سطح تماس سیال سرد و گرم. 5

بر اساس جهت جریان سیال سرد و گرم. 6

بر اساس مکانیزم انتقال حرارت بین سیال سرد و گرم. 8

بر اساس ساختمان مکانیکی و ساختار مبدل ها 9

اصول طراحی مبدل های حرارتی. 20

1- تعیین مشخصات فرآیند و طراحی. 24

2- طراحی حرارتی و هیدرولیکی. 28

3- طراحی مکانیکی. 33

4- ملاحظات مربوط به تولید و تخمین هزینه ها 37

5- فاکتورهای لازم برای سبک و سنگین کردن. 39

6- طراحی بهینه. 40

7- سایر ملاحظات.. 40

نرم افزار HTFS ( شبیه سازی و طراحی مبدل های حرارتی ) 41

TASC، طراحی حرارتی ، بررسی عملکرد و شبیه سازی مبدلهای پوسته و لوله. 42

FIHR، شبیه سازی کوره ها با سوخت گاز و مایع. 42

MUSE، شبیه سازی مبدلهای صفحه ای پره دار 43

TICP، محاسبه عایقکاری حرارتی. 43

PIPE، طراحی، پیش بینی و بررسی عملکرد خطوط لوله. 44

ACOL، شبیه سازی و طراحی مبدلهای حرارتی هواخنک.. 44

FRAN، بررسی و شبیه سازی مبدلهای نیروگاهی. 45

TASC، طراحی حرارتی ، بررسی و شبیه سازی مبدلهای حرارتی پوسته و لوله. 46

توانایی ها 46

کاربرد در فرآیند. 47

مشخصات فنی و توانایی ها 48

خواص فیزیکی. 49

بررسی ارتعاش ناشی از جریان. 49

خروجی. 50

ACOL، شبیه سازی و طراحی مبدلهای حرارتی هواخنک.. 52

طراحی. 52

کاربرد در فرآیند. 53

مشخصات فنی و توانایی. 54

نتایج خروجی. 56

PIPESYS ، شبیه سازی خطوط لوله. 58

امکانات و توانایی ها 59

نمونه هایی از کاربرد PIPESYS در عمل. 60

نرم افزار Aspen B-jac. 61

آشنایی با نرم افزار Aspen Hetran. 63

نحوه کار نرم افزار Hetranدر حالت طراحی. 65

محیط نرم افزار Aspen Hetran. 72

تعریف مساله ( Problem Definition ) 73

اطلاعات خواص فیزیکی ( Physical property data ) 83

ساختار مبدل ( Exchanger Geometry ) 94

داده های طراحی ( Design Data) 106

تنظیمات برنامه ( Program Options ) 113

نتایج ( Results ) 117

خلاصه وضعیت طراحی. 118

خلاصه وضعیت حرارتی. 121

خلاصه وضعیت مکانیکی. 125

جزئیات محاسبه ( Calculation Details ) 127

آشنایی با نرم افزار Aerotran. 129

روش های طراحی نرم افزار Aerotran. 131

آشنایی با نرم افزار Teams. 133

برنامه Props. 136

برنامه Qchex. 138

برنامه Ensea. 140

برنامه Metals. 142

برنامه Primetal 144

برنامه Newcost 147

منابع و مواخذ. 149

پیش گفتار:

مبدل های حرارتی تقریباً پرکاربرترین عضو در فرآیندهای شیمیایی اند و می توان آن ها را در بیشتر واحدهای صنعتی ملاحظه کرد. آنها وسایلی هستند که امکان انتقال انرژی گرمایی بین دو یا چند سیال در دماهای مختلف را فراهم می کنند. این عملیات می تواند بین مایع- مایع ، گاز- گاز و یا گاز- مایع انجام شود. مبدل های حرارتی به منظور خنک کردن سیال گرم و یا گرم کردن سیال با دمای پایین تر و یا هر دو مورد استفاده قرار می گیرند.

مبدل های حرارتی در محدوده وسیعی از کاربردها استفاده می شوند . این کاربردهای شامل نیروگاه ها ، پالایشگاه ها ، صنایع پتروشیمی، صنایع ساخت و تولید ، صنایع فرآیندی ، صنایع غذایی و دارویی ، صنایع ذوب فلز ، گرمایش ، تهویه مطبوع ، سیستم های تبرید و کاربردهای فضایی میباشند. مبدل های حرارتی در دستگاه های مختلف نظیر دیگ بخار ، مولد بخار ، کندانسور، اواپراتور، تبخیر کننده ها ، برج خنک کن ، پیش گرم کن فن کویل ، خنک کن و گرم کن روغن ، رادیاتور ها ، کوره ها و ... کاربرد فراوان دارند.                  

صنایع بسیاری در طراحی انواع مبدل های حرارتی فعالیت دارند و هم چنین ، دروس متعددی در کالج ها و دانشگاه ها با نام های گوناگون در طراحی مبدل های حرارتی ارائه   می گردد. محاسبات مربوط به مبدل ها کاری طولانی و گاهی خسته کننده است. مثلاً طراحی یک مبدل برای یک عملیات به خصوص نیاز به حدس های زیادی دارد که با استفاده از آن ها و طبق استانداردها می توان اندازه های یک مبدل مناسب را پیدا کرد. اما با استفاده از   برنامه های کامپیوتری تمام این محاسبات توسط کامپیوتر انجام میشود و طراح برای طراحی تنها باید شرایط عملیاتی و خواص سیالات حاضر در عملیات را وارد کند. نرم افزارهای Aspen B-jac و HTFS از این موارد هستند. این نرم افزارها شامل برنامه هایی می شوند که توانایی انجام چنین محاسباتی را دارند.

در این تحقیق ابتدا توضیحاتی در مورد مبدل های حرارتی و اصول طراحی آنها بیان گردیده و در ادامه به معرفی و آشنایی با چند نرم افزار طراحی مبدلها پرداخته شده است.

 

دسته بندی مبدل های حرارتی

مبدل های حرارتی را می توان از جنبه های مختلف دسته بندی کرد :

  • بر اساس نوع و سطح تماس سیال سرد و گرم
  • بر اساس جهت جریان سیال سرد و گرم
  • بر اساس مکانیزم انتقال حرارت بین دو سیال سرد و گرم
  • بر اساس ساختمان مکانیکی و ساختار مبدلها

بر اساس نوع و سطح تماس سیال سرد و گرم

1- مبدل های حرارتی نوع Recuperative

در این مبدل سیال سرد و گرم توسط یک سطح جامد ثابت از یکدیگر جدا شده اند و انتقال از طریق سطح مذکور صورت می گیرد. اکثر مبدل های موجود در صنعت از این دسته هستند.

2- مبدل های حرارتی نوع Regenerative

در این مبدل ، سطح جدا کننده سیال سرد و گرم ثابت نبوده و به طور متناوب قسمت هایی از سطح مذکور در معرض حرکت سیال سرد یا گرم قرار می گیرند. این نوع مبدل ها بیشتر در مقیاس های آزمایشگاهی و تحقیقاتی مورد استفاده قرار می گیرند.

3- مبدل های حرارتی نوع تماس مستقیم

در این نوع مبدل های حرارتی ، سیال سرد و گرم به طور مستقیم تماس حاصل نموده ( هیچ دیواره ای بین جریانهای سرد و گرم وجود ندارد ) و تبادل انرژی یا حرارت انجام می گیرد. در مبدل های تماس مستقیم ، جریانها ، دو مایع غیر قابل اختلاط و یا یک گاز و یک مایع هستند. این مبدل ها معمولا از راندمان حرارتی بالایی برخوردارند. نمونه ای از این مبدل ها ، برج های خنک کن ، کولرهای آبی و گرم کن های Open Feed Water Heater موجود در نیروگاه های بخار می باشند .

بر اساس جهت جریان سیال سرد و گرم

بر این اساس مبدل های حرارتی به سه دسته اصلی تقسیم می شوند :

الف- مبدل های حرارتی از نوع جریان همسو

  • مبدل های حرارتی از نوع جریان غیر همسو

ج - مبدل های حرارتی از نوع جریان عمود بر هم

الف- مبدل های حرارتی از نوع جریان همسو

در این نوع مبدل ها جریان سرد و گرم موازی یکدیگر و جهت جریان سیال گرم و سرد آن ها موافق یکدیگر می باشند. یعنی دو جریان سیال ، از یک انتها به مبدل وارد می شوند و هر دو در یک جهت جریان می یابند و از انتهای دیگر خارج می شوند. نکته ای که باید به آن توجه داشت این است که دمای سیال سرد خروجی از مبدل هیچگاه به دمای سیال گرم خروجی نمی رسد. نزدیک شدن مقدار عددی دو دمای مذکور مستلزم بکارگیری سطح انتقال حرارت موثر بسیار بزرگی می باشد.

ب- مبدل های حرارتی از نوع جریان غیر همسو

در شرایطی که جریان سیال سرد و گرم موازی یکدیگر و در خلاف جهت هم باشد مبدل را جریان غیر همسو می نامند. باید توجه داشت در این نوع مبدل ها امکان افزایش دمای سیال سرد خروجی نسبت به سیال گرم خروجی وجود دارد. این مبدلها در شرایط یکسان از سطح انتقال حرارت کمتری نسبت به مبدل های همسو برخوردار هستند.

ج- مبدل های حرارتی از نوع جریان عمود بر هم

در این نوع مبدل ها جهت جریان های سرد و گرم عمود بر هم می باشند. به عنوان متداول ترین نمونه می توان از رادیاتور اتومبیل نام برد. در آرایش جریان عمود بر هم ، بسته به طراحی ، جریان مخلوط یا غیر مخلوط نامیده می شود. سیال داخل لوله ها چون اجازه حرکت در راستای عرضی را نخواهد داشت غیر مخلوط است. سیال بیرونی برای لوله های بی پره مخلوط است چون امکان جریان عرضی سیال و یا مخلوط شدن آن وجود دارد و برای لوله های پره دار غیر مخلوط است زیرا وجود پره ها مانع از جریان آن در جهتی عمود بر جهت اصلی جریان می شود.

بر اساس مکانیزم انتقال حرارت بین سیال سرد و گرم

مبدل های حرارتی بر طبق مکانیزم انتقال گرما ، می توانند به صورت زیر دسته بندی شوند :

1- جابجایی یک فاز در هر دو سمت

2- جابجایی یک فاز در یک سمت ، جابجایی دو فاز در سمت دیگر 

3- جابجایی دو فاز در هر دو سمت

در مبدل های حرارتی از قبیل اکونومایزرها ( مبدل هایی که در آن سیال از شرایط مایع مادون اشباع بسمت شرایط مایع اشباع می رود) و گرمکن های هوا در دیگ بخار ، خنک کن های میانی در کمپرسورهای چند مرحله ای ، رادیاتور خودروها ، ژنراتورها ، خنک کن های روغن ، گرم کن های مورد استفاده در گرمایش اطاقها و غیره ، در هر دو سمت سیال سرد و گرم ، انتقال گرما از طریق جابجایی یک فاز اتفاق می افتد. چگالنده ها ، دیگ های بخار و مولدهای بخار در راکتورهای آب تحت فشار در نیروگاه های هسته ای ، تبخیرکننده ها و رادیاتورهای مورد استفاده در تهویه مطبوع و گرمایش ، دارای مکانیزم های چگالش و جوشش در یکی از سطوح مبدل های حرارتی می باشند. همچنین انتقال گرمای دو فاز   می تواند در هر دو سمت مبدل ، مانند شرایطی که چگالش در یک سمت و جوشش در سمت دیگر سطح انتقال گرما است ، اتفاق بیفتد. هر چند ، بدون تغییر فاز نیز می توان شکلی از انتقال گرمای جریان دوفاز داشت ، همانطور که بسترهای سیال ، مخلوط گاز و ذرات جامد ، به سطح گرمایی ، یا از آن سطح ، گرما منتقل می کنند.

بر اساس ساختمان مکانیکی و ساختار مبدل ها


دانلود با لینک مستقیم


تحقیق : مبدل های حرارتی

پایان نامه ارشد برق طراحی مدار مجتمع یکپارچه مبدل اندازه لکه و فتودتکتور موجبری بر روی زیر لایه InP در پنجره 1.55μm

اختصاصی از هایدی پایان نامه ارشد برق طراحی مدار مجتمع یکپارچه مبدل اندازه لکه و فتودتکتور موجبری بر روی زیر لایه InP در پنجره 1.55μm دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد برق طراحی مدار مجتمع یکپارچه مبدل اندازه لکه و فتودتکتور موجبری بر روی زیر لایه InP در پنجره 1.55μm


پایان نامه ارشد برق طراحی مدار مجتمع یکپارچه مبدل اندازه لکه و فتودتکتور موجبری بر روی زیر لایه InP در پنجره 1.55μm

 

 

 

 

 

چکیده:

در این پایان نامه، طراحی و شبیه سازی مبدل اندازه لکه مبتنی بر مواد InP/InGaAsP در پنجره طول موج 1.55μm ارائه شده است. در ابتدا ساختار و عملکرد ادوات فعال و غیرفعال نوری که دارای قابلیت مجتمع سازی با مبدل اندازه لکه هستند، مورد بررسی قرار گرفته است. سپس طراحی یک مبدل اندازه لکه هیبرید بر پایه دو نوع تیپر افقی و عمودی به طول 2.2mm و 1.5mm و عرض ورودی 2μm و 10μm، برای ایجاد مود اصلی خروجی با پهنای پرتو گوسی 10μm*5μm بر روی زیرلایه n++-InP انجام شده است. برای اینکه بتوان ادوات فعال را در فرکانس های بالاتر از 10GHz با یکدیگر مجتمع سازی نمود نیاز به زیرلایه نیمه عایقی InP(SI-InP می باشد، لذا برای طراحی مبدل اندازه لکه بر روی زیرلایه SI-InP، بر اساس مفهوم ساختار ARROW، نوع و ضخامت لایه های ساختار مشخص گردیده و در دو سطح مقطع طولی و عرضی مبدل در نرم افزارهای COMSOL و OPTIWAVE شبیه سازی انجام شده است. پس از انجام کلیه شبیه سازی ها برای طول های مختلف تیپر و بررسی نمودارهای حاصل از تغییرات ضریب شکست و ضخامت های مختلف لایه های مبدل، ساختار بهینه ای با تلفات تزویج کمتر از 1dB ایجاد شد. در انتها، قابلیت مجتمع سازی مبدل با ادوات نوری همچون آشکارساز و لیزر توسط نرم افزار OPTIWAVE مورد بررسی قرار گرفته است.

مقدمه

رشد سریع مخابرات نوری، نیاز به مجتمع سازی ادوات فوتونیکی بر روی یک تراشه جهت افزایش سرعت و کاهش هزینه بسته بندی را افزایش داده است . تزویج مؤثر همراه با تلفات کم از فیبر نوری به تراشه و بالعکس بخش عمده ای از هزینه ساخت و بسته بندی مدار مجتمع نوری را تشکیل می دهد. در ابتدا از میکرولنز و فیبر نوک تیز جهت کاهش تلفات تزویج استفاده شد اما این تکنولوژی ها تلورانس تطبیق زیادی نیاز داشته و هزینه بسته بندی را افزایش می دهند. با استفاده از مبدل اندازه لکه به صورت مجتمع با سایر ادوات نوری، تزویج مؤثر از فیبر به تراشه ایجاد می گردد.

در فصل یک، کلیات این سمینار شامل: هدف، پیشینه تحقیق بررسی شده است. در فصل دوم به بررسی عملکرد و ساختار ادوات نوری همچون آشکارساز و تقویت کننده نوری و لیزر، جهت مجتمع سازی با مبدل اندازه لکه پرداخته شده است. در فصل سوم، انواع روش های تزویج از فیبر به تراشه و ساختارهای مختلف مبدل اندازه لکه ارائه گردیده است. در فصل پنجم به بیان نتیجه گیری و ارائه پیشنهادات پرداخته شده است.

فصل اول: کلیات

1-1) مقدمه:

عصر حاضر، به «عصر ارتباطات» نام گذاری شده است زیرا ارتباطات، عنصر مهم در این عصر به شمار می آید. در عصر ارتباطات، سیستم مخابراتی، اطلاعات را از یک محل به محل دیگر جابجا می کند ابتدا انتقال داده ها از طریق پالس های الکتریکی به صورت دیجیتال و آنالوگ صورت می گرفت. سپس در سال 1940 اولین سیستم کابل کواکسیال به کار گرفته شد، پهنای باند این سیستم توسط تلفات کابل محدود می شد. به خصوص این تلفات در فرکانس های 10MHZ افزایش پیدا کردند، این محدودیت منجر به پیشرفت سیستم های انتقال مایکرویو شد که ارسال اطلاعات از طریق موج حامل با فرکانس چند مگاهرتز تا چند گیگاهرتز انجام می گرفت. اولین سیستم مایکرویو در فرکانس 4GHZ در سال 1948 استفاده شد. در ارتباط مخابراتی مایکرویو، محیط ارتباطی فضای آزاد، کابل کواکسیال و موجبرها می باشند که ابعاد کابل کواکسیال و موجبرها به فرکانس موج حامل بستگی دارد. موجبرها بیشتر برای فواصل نزدیک به طور مثال بین آنتن و سیستم گیرنده و فرستنده و کابل های کواکسیال برای فواصل نزدیک و دور (ارتباط بین دو شهر و حتی بین دو قاره) به کار برده می شود.

تا سال 1950 منبع نور کوهرنس و سیستم انتقال نور مناسب وجود نداشت. بنابراین امکان استفاده از امواج نوری به عنوان حامل نبود. با اختراع لیزر توسط maiman در سال 1960، مشکل وجود منبع نور کوهرنس حل شده و نیاز به انتقال نور، افزایش یافت.

کاکو و کوکهام انگلیسی برای اولین بار استفاده از شیشه را به عنوان محیط انتشار نور مطرح ساختند. آنان مبنای کار خود را بر آن گذاشتند که به سرعتی حدود 100Mb/s در محیط انتشار شیشه دست یابند. ولی این سرعت انتقال با تضعیف زیاد انرژی همراه بود اگر چه آنان در رسیدن به هدف خود ناکام ماندند ولی در سال 1966 میلادی، دانشمندان در این نظریه که نور در الیاف شیشه ای هدایت می شود پیشرفت کردند و حاصل آن ایجاد فیبر نوری جهت انتقال اطلاعات بود. در سیستم مخابرات نوری محیط ارتباطی، فضای آزاد و فیبر نوری است و فرکانس حامل حدود 100THZ از طول موج های مرئی تا مادون قرمز می باشد از آنجایی که در فیبر نوری از امواج نوری یا لیزری با فرکانس بسیار بالاتری از مایکرویو استفاده می شود، بنابراین می توان پهنای باند بیشتری را ارسال کرد. پهنای باند بیشتر به معنای ارسال اطلاعات بیشتر یا سرعت بالاتر اطلاعات است. ظرفیت انتقالی فیبر نوری تا چندین هزار برابر کابل مسی است.

 


چکیده 1
مقدمه 2
فصل اول: کلیات 3
1-1 ) هدف 4
2-1 ) پیشینه تحقیق 4
3-1 ) روش تحقیق 14
فصل دوم: ادوات فعال نوری با قابلیت مجتمع سازی 16
1-2 ) مقدمه 17
با تابش عمودی 19 PIN 2-2 ) آشکارساز نوری
با تابش عمودی 20 PIN 1-2-2 ) بازده کوانتومی و پهنای باند در آشکارساز
با تابش جانبی (آشکارساز موجبری) 25 PIN 3-2 ) آشکارساز نوری
1-3-2 ) بازده کوانتومی آشکارساز موجبری 26
2-3-2 ) بهینه سازی ساختمان آشکارساز موجبری 28
3-3-2 ) طراحی نوری آشکارساز موجبری 31
4-3-2 ) طراحی الکتریکی آشکارساز موجبری 34
با ساختار موجبر دوقلو 38 PIN 4-2 ) آشکارساز نوری
1-4-2 ) طراحی نوری آشکارساز موجبر دوقلو 43
2-4-2 ) طراحی الکتریکی آشکارساز موجبر دوقلو 48
3-4-2 ) بهینه سازی نوری 50
5-2 ) تقویت کننده نوری و لیزر نیمه هادی 52
1-5-2 ) مفهوم تقویت کنندگی 54
6-2 ) نتیجه گیری 56
فصل سوم: مبدل اندازه لکه 63
1-3 ) مقدمه 64
2-3 ) روش های تزویج نور به فیبر نوری 64
1-2-3 ) استفاده از فیبر نوک تیز 64
2-2-3 ) استفاده از لنز 64
3-2-3 ) آرایه فیبر 66
3-3 ) قطر میدان مود 68
4-3 ) تلفات عدم تطابق مود 69
5-3 ) انواع مبدل اندازه لکه 71
72 (A 1-5-3 ) مبدل اندازه لکه تک مود یا آدیاباتیک (طبقه
73 (I 2-5-3 ) مبدل اندازه لکه تداخلی یا چند موده (طبقه
73 (I+A 3-5-3 ) مبدل اندازه لکه هیبرید آدیاباتیک/تداخلی (طبقه
73 (A/L 4-5-3 ) مبدل اندازه لکه آدیاباتیک افقی (طبقه
73 (A/T 5-5-3 ) مبدل اندازه لکه متقاطع آدیاباتیک (طبقه
74 (A/L+T 6-5-3 ) مبدل اندازه لکه هیبرید آدیاباتیک (طبقه
75 (I/L 7-5-3 ) مبدل اندازه لکه افقی تداخلی (طبقه
76 (I/T 8-5-3 ) مبدل اندازه لکه متقاطع تداخلی (طبقه
77 (I/L+T 9-5-3 ) مبدل اندازه لکه هیبرید تداخلی (طبقه
6-3 ) نتیجه گیری 77
فصل چهارم: طراحی و مجتم عسازی مبدل اندازه لکه با ادوات فعال نوری
1-4 ) مقدمه 79
n 2-4 ) مبدل اندازه لکه بر روی زیرلایه ++-InP 79
n 1-2-4 ) شبیه سازی مبدل اندازه لکه بر روی زیرلایه ++-InP 81
83 ARROW 3-4 ) مفهوم ساختار
با استفاده از ساختار (SI-InP) نیمه عایقی InP 4-4 ) مبدل اندازه لکه بر روی زیرلایه
ARROW
87 SI-InP 1-4-4 ) شبیه سازی مبدل اندازه لکه بر روی زیرلایه
91 FMW 2-4-4 ) ضخامت لایه
93 FMW 3-4-4 ) عرض موجبر
یکسان 96 InGaAsP با ضخامت لایه SI-InP 5-4 ) مبدل اندازه لکه بر روی زیرلایه
با ضخامت لایه SI-InP 1-5-4 ) شبیه سازی مبدل اندازه لکه بر روی زیرلایه
یکسان InGaAsP
99 FMW 2-5-4 ) ضخامت لایه
100 FMW 3-5-4 ) عرض موجبر
6-4 ) مجتمع سازی مبدل اندازه لکه با ادوات نوری 103
7-4 ) نتیجه گیری 105
فصل پنجم: نتیجه گیری و پیشنهادات 106
نتیجه گیری 107
پیوست ها 108
منابع و ماخذ ١١٠
فهرست منابع لاتین ١١٠
سایت های اطلاع رسانی ١١٩
چکیده انگلیسی ١٢٠
با پیشرفت تکنولوژی. 4 BL 1: رشد - شکل 1
2: فیبر لنزدار. 6 - شکل 1
3: موجبر تیپر شده. 6 - شکل 1
4: عرض مود به عنوان تابعی از عرض هسته 6 - شکل 1
5: ساختار اولیه تیپر سه بعدی پیشنهادی بین لیزر و فیبر. 8 - شکل 1
6: دو نوع تیپر سه بعدی: (الف) تیپر معکوس شده، (ب) تیپر معمولی. 9 - شکل 1
9 .NTT 7: طرحواره مبدل اندازه لکه ساخته شده توسط شرکت - شکل
8: طرحواره تیپر عرضی معکوس جهت تزویج مستقیم به فیبر نوری. 10 - شکل 1
9: موجبر (الف)توسعه دهنده مود، (ب) موجبر با قطعات متناوب. 10 - شکل 1
10 : تیپر موجبر با قطعات غیر متناوب. 11 - شکل 1
ب) تلفات انتشار به عنوان تابعی از عرض موجبر. 12 ) ،SOI ( 11 : طرحواره (الف - شکل 1
12 : تزویجگر توری عمودی مابین موجبر و فیبر نوری. 12 - شکل 1
الف) انتشار نور در ساختار، (ب) تلفات تیپر ) Soare 13 : مبدل طراحی شده توسط - شکل 1
بر حسب طول های مختلف تیپر عمودی.
به صورت مجتمع با لیزر. 13 Mesel 14 : طرحواره تیپر طراحی شده توسط - شکل 1
15 : آشکارساز نوری عمودی. 14 - شکل 1
15 .RCE 16 : آشکارسازهای با فضای تکرار - شکل 1
17 : آشکارساز نوری موجبری. 16 - شکل 1
17 .TWPD 18 : آشکارساز نوری - شکل 1
آشکارساز نوری، =PD ، مدولاتور =MOD) 1: شبکه ارتباط نوری - شکل 2
پیش تقویت کننده). =Pre-Amp
الف) تابش عمودی، (ب) تابش جانبی. 19 ) PIN 2: آشکارساز نوری - شکل 2
20 .PIN 3: دیاگرام باند انرژی آشکارساز - شکل 2
از سطح ماده. 20 x 4: کاهش توان در فاصله - شکل 2
5: وابستگی ضریب جذب به طول موج مواد نیمه هادی متفاوت. 21 - شکل 2
6: قابلیت پاسخ دهی مواد مختلف در طول موج های متفاوت. 23 - شکل 2
24 .PIN 7: پاسخ ولتاژ آشکارساز - شکل 2
8: آشکارساز موجبری. 26 - شکل 2
9: طرحواره سطح مقطع آشکارساز موجبری. 29 - شکل 2
به عنوان تابعی از ضخامت لایه InGaAs 10 : جذب میدان نوری در لایه اتصال - شکل 2
پوششی.
بر حسب سطح آلایش. 30 InP 11 : تلفات نوری و مقاومت لایه پوشش - شکل 2
12 : بازده کوانتومی داخلی به عنوان تابعی از طول آشکارساز و ضخامت لایه فعال. 32 - شکل 2
13 : توان نوری نرمالیزه شده به عنوان تابعی جهت انتشار. 32 - شکل 2
14 : مسیر عبور نور در آشکارساز موجبری. 32 - شکل 2
15 : توان نوری در آشکارساز موجبری. 33 - شکل 2
34 .InGaAs 16 : سرعت حامل ها در - شکل 2
17 : مدل مداری آشکارساز موجبری. 35 - شکل 2
18 : مدار معادل سیگنال کوچک آشکارساز موجبری. 35 - شکل 2
19 : پهنای باند (الف) تابعی از ضخامت لایه تخلیه برای طول های متفاوت و عرض - شکل 2
.500nm 2، (ب) تابعی از طول برای عرض های متفاوت و ضخامت لایه تخلیه μm
از n به شکل تابعی از (الف) عرض، (ب) ضخامت لای ه بافر نوع RC 20 : پهنای باند - شکل 2
، p-InP د) ضخامت لایه پوشش پایینی ) ،p‐ InP ج) سطح آلایش پوشش ) ،n-InP جنس
Ln ( (و) ضخامت لایه موجبری، (ه
مربوط به دو آشکارساز موجبری با دو قسمت برآمده متفاوت. 38 RF 21 : تضعیف - شکل 2
22 : طرحواره (الف) تزویجگر عمودی، (ب) برش عرضی از آشکارساز موجبر دوقلو. 39 - شکل 2
23 : آشکارساز موجبر دوقلو (الف) سطح مقطع طولی، (ب) سطح مقطع عرضی. 41 - شکل 2
در آشکارساز موجبری دوقلو، (ب) دیاگرام باند PIN 24 : طرحواره (الف) آشکارساز - شکل 2
انرژی.

425 : میدان های الکتریکی و مغناطیسی در موجبر غیرفعال ورودی (خط قرمز ) و آشکارساز - شکل 2
موجبر دوقلو برای مود اصلی (-) و مود مرتبه اول (.-).
26 : مسیر عبور نور در آشکارساز موجبر دوقلو. 46 - شکل 2
27 : منحنی شارش توان. 46 - شکل 2
28 : مسیر عبور نور در آشکارساز موجبر دوقلو با کاهش فاصله میان دو موجبر. 47 - شکل 2
29 : منحنی شارش توان با کاهش فاصله میان دو موجبر. 47 - شکل 2
30 : مسیر عبور نور در آشکارساز موجبر دوقلو با افزایش فاصله میان دو موجبر. 47 - شکل 2
31 : منحنی شارش توان با افزایش فاصله میان دو موجبر. 48 - شکل 2
مربوط به آشکارساز موجبری دوقلو. 49 RC 32 : المان های - شکل 2
به عنوان تابعی از ضخامت و طول آشکارساز. 51 PIN 33 : بازده تزویج آشکارساز نوری - شکل 2
34 : طرحواره تقویت کننده نوری نیمه هادی. 52 - شکل 2
35 : کاربرد انواع تقویت کننده ها در لینک انتقال نوری. 53 - شکل 2
36 : فرآیندهای (الف) جذب، (ب) گسیل خودبخودی، (ج) گسیل القایی. 54 - شکل 2
55 .N-n-P 37 : دیاگرام باند انرژی در بایاس مستقیم ساختار - شکل 2
38 : ساختاری از تقویت کننده نوری نیمه هادی. 55 - شکل 2
39 : لیزر کاواک توسعه یافته. 56 - شکل 2
نمونه و طیف آن در جریان های تزریقی مختلف. 59 LI 40 : منحنی - شکل
لیزرهای کاواک توسعه یافته با طول های تقویت کننده نوری نیم ه LI 41 : منحنی های - شکل 2
هادی مختلف.0
600 ، (ب) به 62 μm 4.3 با بخش های فعال (الف) به طول mm 42 : طیف لیزر با کاواک - شکل 2
.700μm طول
1: انواع فیبر نوک تیز. 65 - شکل 3
2: مجموعه ای از میکرولنزها. 65 - شکل 3
3: مجموعه ای از میکرولنزها (الف) دایروی، (ب) مربعی، (ج) استوانه ای. 66 - شکل 3
4: آرایه فیبر. 67 - شکل 3
شکل. 67 v 5: برش عرضی فیبر تک مود کانال - شکل 3
6: آرایه فیبر هشت کاناله. 67 - شکل 3
7: مفهوم قطر میدان مود. 68 - شکل 3
8: تزویج نور از تراشه به فیبر. 69 - شکل 3
موجبر. 71 MFDy ( ج) ،MFDx 9: (الف) نمودار میدان موجبر، (ب) مقادیر - شکل 3
73 .A/L 10 : مبدل اندازه لکه آدیاباتیک افقی - شکل 3
11 : مبدل اندازه لکه متقاطع آدیاباتیک (الف) ساختار مدفون، (ب) طرح نواری. 74 - شکل 3
12 : انواع مختلف مبدل اندازه لکه هیبرید آدیاباتیک. 75 - شکل 3
13 : مبدل اندازه لکه افقی تداخلی. 76 - شکل 3
14 : مبدل اندازه لکه متقاطع تداخلی. 76 - شکل 3
15 : شکل تداخلی بعد از فاصله انتشار. 76 - شکل 3
16 : مبدل اندازه لکه هیبرید تداخلی. 77 - شکل 3
n 1: نمای سه بعدی مبدل اندازه لکه بر روی زیرلایه - شکل 4 ++-InP 79
n 2: سطح مقطع طول مبدل اندازه لکه بر پایه - شکل 4 ++-InP 80 .
82 .(1- مشخص شده در شکل ( 4 Z تا 5 Z 3: میدان نوری در مقاطع 0 - شکل 4
82 .FMW 4: انتقال توان از موجبر کم عمق به موجبر - شکل 4
5: موجبر سه لایه سیلیکونی. 83 - شکل 4
ب) نمودار ضریب شکست ساختار ) ،ARROW 6: طرحواره (الف) ساختار - شکل 4
.ARROW
84 .ARROW 7: انواع ساختار موجبر - شکل 4
85 .AC 8: مبدل اندازه لکه بر پایه لایه های - شکل 4
87 .SI-InP 9: نمای سه بعدی مبدل اندازه لکه بر پایه - شکل 4
- در شکل 4 ) Z تا 5 Z در سطح مقطع های مختلف 0 TE 10 : توزیع میدان نوری مود - شکل 4
.(9
بصورت مجتمع با ادوات فعال نوری. 89 SI-InP 11 : سطح مقطع طولی مبدل بر پایه - شکل 4
89 .FMW 12 : انتقال توان از موجبر کم عمق به موجبر - شکل 4
90 .FMW 13 : انتقال توان از موجبر کم عمق به موجبر - شکل 4
14 : تلفات تیپر بر حسب طول تیپر. 90 - شکل 4
n 15 : میزان تفاوت ضریب شکست وابسته به میزان آلایش لایه - شکل 4 ++-InP 91 .
92 .FMW 16 : انتشار مود اصلی در موجبر - شکل 4
92 .FMW برای ضخامت های مختلف لایه MFD 17 : مقادیر - شکل 4
18 : میزان عدم تطابق مود بین موجبر و فیبر نوری برای ضخامت لایه مختلف - شکل 4
.FMW
19 : عدم تطابق مود بین موجبر و فیبر نوری بر حسب ضرایب شکست مختلف. 94 - شکل 4
در هنگام FMW 20 : نمودار تلفات عدم تطابق مود بر حسب ضخامت مختلف لایه - شکل 4
.MFDfibre=10μm تزویج به فیبر با
در هنگام FMW 21 : نمودار تلفات عدم تطابق مود بر حسب ضخامت مختلف لایه - شکل 4
.MFDfibre=7μm تزویج به فیبر با
در هنگام FMW 22 : نمودار تلفات عدم تطابق مود بر حسب ضخامت مختلف لایه - شکل 4
.MFDfibre=4μm تزویج به فیبر با
23 : تلفات تیپر بر حسب طول تیپر. 96 - شکل 4
- در شکل 4 ) Z تا 5 Z در سطح مقطع های مختلف 0 TE 24 : توزیع میدان نوری مود - شکل 4
98 .FMW 25 : انتقال توان از موجبر کم عمق به موجبر - شکل 4
99 .FMW 26 : انتقال توان از موجبر کم عمق به موجبر - شکل 4
27 : تلفات تیپر بر حسب طول تیپر. 99 - شکل 4
28 : میزان عدم تطابق مود بین موجبر و فیبر نوری برای ضخامت لایه مختلف - شکل 4
.FMW
29 : عدم تطابق مود بین موجبر و فیبر نوری بر حسب ضرایب شکست مختلف. 100 - شکل 4
در هنگام FMW 30 : نمودار تلفات عدم تطابق مود بر حسب ضخامت مختلف لایه - شکل 4
.MFDfibre=10μm تزویج به فیبر با
در هنگام FMW 31 : نمودار تلفات عدم تطابق مود بر حسب ضخامت مختلف لایه - شکل 4
.MFDfibre=7μm تزویج به فیبر با
در هنگام FM 32 : نمودار تلفات عدم تطابق مود بر حسب ضخامت مختلف لایه - شکل 4
.MFDfibre=4μm تزویج به فیبر با
33 : تلفات تیپر بر حسب طول تیپر. 103 - شکل 4
34 : مجتمع سازی مبدل اندازه لکه با ادوات فعال. 103 - شکل 4
35 : مجتمع سازی مبدل اندازه لکه با آشکارساز نوری موجبری. 104 - شکل 4
36 : مجتمع سازی لیزر با مبدل اندازه لکه. 105 - شکل 4
.Z و 5 Z در سطح مقطع های مختلف 0 TE 1: توزیع میدان نوری مود - شکل 5
.FMW 2: انتقال توان از موجبر کم عمق به موجبر - شکل 5
3: تلفات تیپر بر حسب طول تیپر. - شکل 5
.FMW 4: میزان عدم تطابق مود بین موجبر و فیبر نوری برای ضخامت لایه مختلف - شکل 5
5: عدم تطابق مود بین موجبر و فیبر نوری بر حسب ضرایب شکست مختلف. - شکل 5
6: تلفات تیپر بر حسب طول تیپر. - شکل 5
7: مجتمع سازی مبدل اندازه لکه با آشکارساز نوری موجبری. - شکل 5
8: مجتمع سازی لیزر با مبدل اندازه لکه. - شکل 5
34 .InGaAs 1: پارامترهای الکتریکی ماده - جدول 2
2: خواص مواد مختلف. 42 - جدول 2
3: مشخصات لایه های آشکارساز موجبر دوقلو. 51 - جدول 2
1: دسته بندی انواع تیپر. 72 - جدول 3
n 1: مشخصات لایه های مبدل اندازه لکه بر روی زیرلایه - جدول 4 ++-InP 81
86 .SI-InP 2: خصوصیات لایه های مبدل بر روی زیرلایه - جدول 4
MFD 3: میزان تلفات عدم تطابق مود برای تزویج نور از موجبر به فیبر با -
97 .SI-InP 4: خصوصیات لایه های مبدل بر روی زیرلایه - جدول 4
MFD 5: میزان تلفات عدم تطابق مود برای تزویج نور از موجبر به فیبر با -
متفاوت. MFD 1: میزان تلفات عدم تطابق مود برای تزویج نور از موجبر به فیبر با

 

 


دانلود با لینک مستقیم


پایان نامه ارشد برق طراحی مدار مجتمع یکپارچه مبدل اندازه لکه و فتودتکتور موجبری بر روی زیر لایه InP در پنجره 1.55μm