هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

[ گزارش کارآموزی ] مهندسی عمران | 27 صفحه فایل ورد

اختصاصی از هایدی [ گزارش کارآموزی ] مهندسی عمران | 27 صفحه فایل ورد دانلود با لینک مستقیم و پر سرعت .

فهرست مطالب :

اجرای سقف تیرچه و بلوک

ایزولاسیون پای ستون ها

اجرای کرسی چینی اندود ماسه سیمان روی کرسی و ایزولاسیون روی آن 

آجر چینی دیوار های خارجی

اجرای گچ و خاک روی دیوارها و سقف 

تهیه و نصب چهار چوب در ها و پنجره های فلزی 

تاسیسات برقی 

تأسیسات مکانیکی ، لوله های چدنی فاضلاب ، کانال کولر        

چک لیست نظارتی کرسی چینی و بلوکاژ کف 

چک لیست نظارتی عایق کاری روی کرسی چینی 

چک لیست نظارتی آجر کاری

چک لیست نظارتی اندود گچ و خاک 

چک لیست نظارتی ساخت و نصب چهار چوب درب ها و پنجره ها

چک لیست نظارتی کرم بندی پشت بام

نظرات و پیشنهادات کار آموز


دانلود با لینک مستقیم


[ گزارش کارآموزی ] مهندسی عمران | 27 صفحه فایل ورد

قانون نظام مهندسی و کنترل ساختمان

اختصاصی از هایدی قانون نظام مهندسی و کنترل ساختمان دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 29

 

قانون نظام مهندسی و کنترل ساختمان

فصل اول- تعاریف :

ماده 1- اصطلاحات زیر در معانی مربوط به کار می‌روند:

دفتر مهندسی: هر گونه محل انجام خدمات مهندسی ساختمان که طبق ماده (9) آیین‌نامه اجرایی قانون نظام مهندسی و کنترل ساختمان مجوز فعالیت دریافت نموده باشد.

شخص حقیقی: مهندسان دارای پروانه اشتغال به کار مهندسی ، کاردانهای فنی و معماران تجربی دارای پروانه اشتغال بکار کاردانی یا تجربی می‌باشند.

شخص حقوقی: شرکت، موسسه، سازمان و نهاد عمومی یا خصوصی که برای انجام خدمات مهندسی، دارای پروانه اشتغال بکار مهندسی شخص حقوقی معتبر از وزارت مسکن و شهرسازی باشد.

فصل دوم ـ مقررات ملی ساختمان

ماده 2ـ مقررات ملی ساختمان، مجموعه اصول و قواعد فنی و ترتیب کنترل اجرای آنهاست که باید در طراحی، محاسبه، اجرا، بهره‌برداری و نگهداری ساختمانها در جهت تأمین ایمنی، بهداشت، بهره‌دهی مناسب، آسایش، صرفه اقتصادی، حفاظت محیط‌زیست و صرفه‌جویی در مصرف انرژی و حفظ سرمایه‌های ملی رعایت شود.

ماده 3 ـ مقررات ملی ساختمان دارای اصول مشترک و یکسان لازم‌الاجرا در سراسر کشور است و بر هرگونه عملیات ساختمانی نظیر تخریب، احداث بنا، تغییر در کاربری بنای موجود، توسعه بنا، تعمیراساسی و تقویت بنا حاکم می‌باشد.

ماده 4 ـ مقررات ملی ساختمان به عنوان تنها مرجع فنی و اصل حاکم در تشخیص صحت طراحی، محاسبه، اجرا، بهره‌برداری و نگهداری ساختمانها اعم از مسکونی، اداری، تجاری، عمومی، آموزشی، بهداشتی و نظایر آن است.

تبصره: در مباحثی که مقررات ملی ساختمان تدوین نگردیده باشد، تا زمان تصویب، منابع معتبر(به طور ترجیحی منتشر شده توسط مراجع ملی ذی‌ربط) ملاک عمل خواهند بود.

فصل سوم : اشخاص حقوقی و دفاتر مهندسی طراحی ساختمان

ماده 5-به منظور تنسیق امور صنفی و شغلی مهندسان متخصص در رشته‌های هفتگانه ساختمان و در جهت ارائه خدمات مهندسی کارآمد، کلیه طراحی‌ها از جمله معماری، سازه، تأسیسات برقی و مکانیکی باید توسط اشخاص حقوقی یا دفاتر مهندسی طراحی ساختمانی صلاحیتدار دارای پروانه اشتغال، بعنوان طراح تهیه گردد.

تبصره1: برای تعیین فعالیتهای اشخاص حقیقی دارای پروانه اشتغال، وزارت مسکن وشهرسازی نسبت به تهیه و ابلاغ دستورالعمل لازم اقدام خواهد نمود.

تبصره2: اشخاص حقیقی دارنده پروانه اشتغال به کار مهندسی می‌توانند دفتر مهندسی طراحی تشکیل دهند مشروط به آن که برای دفتر یادشده از وزارت مسکن و شهرسازی مجوز فعالیت دریافت نمایند و در محل اشتغال به این فعالیت تابلوی دفتر مهندسی نصب کنند.

ماده 6- اشخاص حقوقی، موسس یا موسسین دفاتر مهندسی طراحی ساختمان باید دارای پروانه اشتغال به کار مهندسی معتبر از وزارت مسکن و شهرسازی باشند و مطابق با قراردادی که با مالک منعقد می‌نمایند عهده‌دار انجام خدمات براساس دستورالعمل ابلاغی از طرف وزارت مسکن و شهرسازی خواهند بود.

ماده 7- شهرداریها و سایر مراجع صدور پروانه ساختمانی مکلفند تنها نقشه‌هایی را بپذیرند که توسط اشخاص حقوقی، یا مسئولین دفاتر مهندسی طراحی ساختمان و طراح آن در حدود صلاحیت و ظرفیت مربوط امضاء و مهر شده است.

ماده 8- سازمان نظام مهندسی استان موظف به نظارت بر حسن انجام خدمات اشخاص حقوقی و دفاتر مهندسی طراحی ساختمان می‌باشد و در صورت مشاهده تخلف باید مراتب را حسب مورد برای رسیدگی و اتخاذ تصمیم به شورای انتظامی استان، سازمان مسکن و شهرسازی استان و سایر مراجع قانونی ذیربط اعلام نمایند. در صورت احراز هرگونه تخلف، برخورد انضباطی تا حد ابطال پروانه اشتغال صورت خواهد پذیرفت.

فصل چهارم – اشخاص حقوقی و دفاتر مهندسی اجرای ساختمان

ماده 9- کلیه عملیات اجرایی ساختمان باید توسط اشخاص حقوقی و دفاتر مهندسی اجرای ساختمان به عنوان مجری، طبق دستورالعمل ابلاغی از طرف وزارت مسکن و شهرسازی انجام شود و مالکان برای انجام امور ساختمانی خود مکلفند از اینگونه مجریان استفاده نمایند.

ماده10ـ مجری ساختمان در زمینه اجرا، دارای پروانه اشتغال به کار از وزارت مسکن و شهرسازی است و مطابق با قراردادهای همسان که با صاحبان کار منعقد می‌نماید اجرای عملیات ساختمان را براساس نقشه‌های مصوب و کلیه مدارک منضم به قرارداد بر عهده دارد. مجری ساختمان نماینده فنی صاحب کار در اجرای ساختمان بوده و پاسخگوی کلیه مراحل اجرای کار به ناظر و دیگر مراجع کنترل ساختمان می‌باشد.

تبصره: شهرداریها و سایر مراجع صدور پروانه ساختمانی موظفند نام و مشخصات مجری واجد شرایط را که توسط صاحب کار معرفی شده و نسخه‌ای از قرارداد منعقد شده با او را که در اختیار شهرداری و سازمان نظام مهندسی ساختمان استان قرار داده است، در پروانه مربوطه قید نمایند. مالکانی که دارای پروانه اشتغال به کار در زمینه اجرا می‌باشند نیازی به ارائه قرارداد ندارند.

ماده 11ـ مجری ساختمان مسئولیت صحت انجام کلیه عملیات اجرایی ساختمان را برعهده دارد و در اجرای این عملیات باید مقررات ملی ساختمان، ضوابط و مقررات شهرسازی، محتوای پروانه ساختمان و نقشه‌های مصوب مرجع صدور پروانه را رعایت نماید.

ماده 12ـ رعایت اصول ایمنی و حفاظت کارگاه و مسائل زیست‌محیطی به عهده مجری می‌باشد.

ماده 13 ـ مجری موظف است برنامه زمانبندی کارهای اجرایی را به اطلاع ناظر برساند و کلیه عملیات اجرایی به ویژه قسمتهایی از ساختمان که پوشیده خواهند شد با هماهنگی ناظر انجام داده و شرایط نظارت در چهارچوب وظایف ناظر (ناظرین) در محدوده کارگاه را فراهم سازد.

ماده 14ـ مجری موظف است قبل از اجرا، کلیه نقشه‌ها را بررسی و در صورت مشاهده اشکال، نظرات پیشنهادی خود را برای اصلاح به طور کتبی به طراح اعلام نماید.


دانلود با لینک مستقیم


قانون نظام مهندسی و کنترل ساختمان

ساخت داربست های مهندسی بافت به روش Gas Foaming

اختصاصی از هایدی ساخت داربست های مهندسی بافت به روش Gas Foaming دانلود با لینک مستقیم و پر سرعت .

ساخت داربست های مهندسی بافت به روش Gas Foaming


ساخت داربست های مهندسی بافت به روش Gas Foaming

فرمت :WORD                                                     تعداد صفحه :263

فهرست

پیش گفتار

یکی از معضلات بزرگی که علم پزشکی از دیرباز با آن درگیر بوده است، ارائه درمانی قطعی برای بازسازی بافت های از کار افتاده و یا معیوب است. متداول ترین شیوه در درمان این نوع بافت ها، روش سنتی پیوند است که خود مشکلات عدیده ای را به دنبال دارد. از جمله این مشکلات می توان به کمبود عضو اهدائی، هزینه بالا و اثرات جانبی حاصل از پیوند بافت بیگانه Allograft)) که مهمترین آنها همان پس زنی بافت توسط بدن پذیرنده است اشاره کرد. این محدودیت ها دانشمندان را بر آن داشت تا راه حلی مناسب برای این معضل بیابند.

   مهندسی بافت با عمر حدوده 1 ساله خود روشی نوید بخش در تولید گزینه های بیولوژیکی برای کاشتنی ها (Implants) و پروتزها ارائه کرده و وعده بزرگ تهیه اندام های کاملاً عملیاتی برای رفع مشکل کمبود عضو اهدائی را می دهد. اهداف مهندسی بافت فراهم سازی اندام های کارآمد یا جایگزین های قسمتی از بافت برای بیمارانی با ضعف یا از کارافتادگی اندام و یا بیماری های حاد است که این امر با استفاده از روش‌های درمانی متنوع اندام مصنوعی- زیستی تحقق می یابد. بنا به تعریف، مهندسی بافت رشته ای است که از ترکیب  علم بیولوژی مواد و علم مهندسی یا به عبارتی Biotech جهت بیان ارتباطات ساختاری بافت های فیزیولوژیکی و طبیعی پستانداران در راستای توسعه روش های نوین ترمیم بافت و جایگزین سازی بافت، توسعه یافته است. مهندسی بافت شامل مباحثی نظیر ترکیبات نوین سلول ها، بیومواد غیرسلولی، داروها، فرآورده های ژنی یا ژن هایی می باشد که قابل طراحی، تشخیص و ساخت بوده و امکان رهایش آنها به طور همزمان یا ترتیبی به عنوان عامل های درمانی میسر باشد. اگرچه داروها یا بیومواد غیر سلولی به مواد بسیاری اطلاق می گردد اما درمان های منهدسی بافت در واقع منحصر به فرد هستند.

داربست مهندسی بافت

 در مهندسی بافت، سلول ها بر روی یک بستر از جنس پلیمر زیست تخریب پذیر بسیار متخلخل استقرار یافته، رشد و تکثیر می یابند. روند رشد این سلول ها در جهت بازسازی بافت در سه بعد است. یکی از اساسی ترین قسمت های مهندسی بافت، داربست های زیست تخریب پذیر هستند که تحت نام Scaffold شناخته می شوند. این داربست ها در حقیقت بستری متخلخل با ساختاری شبیه به ماتریس برون سلولی بافت (ECM) هستند که رشد سلول را به سمت تشکیل بافت مورد نظر جهت می دهند. از آنجا کلیه سلول های بدن به غیر از سلول های سیستم خون رسانی و بافت های جنینی خاص بر روی ECM رشد می کنند، ایجاد یک بستر مصنوعی در محیط in vitro بسیار اهمیت دارد. با رشد سلول ها بر روی داربست، داربست تخریب می شود. جنس این داربست ها پلیمر و در بعضی موارد کامپوزیت پلیمر- سرامیک است. پلیمر های متداول مورد استفاده در مهندسی بافت در جدول 1 آورده شده است.

 

 

 

 

 

 

 

پر استفاده ترین پلیمر ها در مهندسی بافت پلیمرهای خانواده پلی- هیدروکسی اسید شامل PGA , PLA و PLGA هستند که به طور گسترده به عنوان داربست مورد استفاده قرار می گیرند. داربست های کامپوزیت پلیمر-سرامیک در موارد ارتوپدی استفاده شده و از مهمترین سرامیک های به کار رفته در آنها می توان به تری کلسیم فسفات، تتراکلسیم فسفات و هیدورکسی آپاتیت اشاره کرد. علت به کارگیری سرامیک ها در داربست، افزایش استحکام پلیمر، چسبندگی به استخوان و قابلیت تحرک رشد درون استخوان است. بهینه ترین کامپوزیت در این مورد ترکیب PLGA و هیدروکسی آپاتیت شناخته می شود.

   مکانیزم تخریب PGA , PLA و کوپلیمر های آنها بر اساس هیدرولیز تصادفی باندهای استری زنجیره پلیمری است. محصول نهایی این تخریب آب و  است که به آسانی از بدن دفع می شوند. یک داربست ایده آل باید  دارای تخلخل مناسب برای انتشار مواد غذایی بوده و امکان پاکسازی مواد زائد را داشته و دارای پایداری مکانیکی مناسبی جهت تثبیت و انتقال بار باشد. علاوه بر این، شیمی سطح ماده باید چسبندگی سلول و علامت دهی داخل سلولی (intracellular signaling) را به نحوی ارتقاء دهد که سلول ها فنوتیپ طبیعی خودشان را بروز دهند. برای رشد سریع سلول، داربست باید دارای میکروساختار بهینه باشد، فاکتورهای مهم یک داربست عبارتند از اندازه خلل و فرج، شکل و مساحت ویژه سطح. خلل و فرج موجود در داربست در حقیقت مسیرهای غذارسانی سلول ها و دفع پسماندهای سلولی هستند. برای مثال خلل و فرج بهینه برای رشد سلولهای فیبروبلاست درون رست ، خلل و فرج مناسب برای بازسازی پوست یک پستاندار بالغ  30-350 , 20-125 برای بازسازی استخوان است. بنابراین هدف اصلی در ساخت داربست، کنترل دقیق اندازه خلل و فرج و تخلخل است. مورد دیگر نحوه ایجاد چسبندگی مناسب سلول به سطح داربست است که در این مورد هم شیوه های متفاوتی به کار برده می شود، یکی از ساده ترین شیوه ها به کارگیری رشته های کوچک پپتیدی در پروتئین های ECM است که به عنوان واسطه مسئولیت چسبندگی سلول به بیومواد را بر عهده دارند. اجزاء گوناگون سرم قابل حل (پروتئین ها، پپتیدها) و رشته RGD برای تسهیل چسبندگی سلول شناخته شده اند.

روش های ساخت داربست

    از آنجا که ECM بافت های مختلف باهم تفاوت دارد، داربست های مصنوعی به کار رفته برای هر بافت نیز با هم فرق می‌کند. تهیه داربست هایی با ماتریس های مختلف نیازمند به کارگیری روش های ساخت متفاوتی است که هر یک شیوه و کاربرد منحصر به خود را دارد. از جمله این روش ها می توان به
Melt Casting , Freeze Drying , Membrane Lamination , Solvent Casting

Gas Foaming , Polymerization, Phase Separation

 اشاره کرد. شکل داربست یا به عبارتی Morphology آن باید دقیقاً شبیه بافت معیوب باشد. برای شبیه سازی شکل داربست با قسمت ناقص اندام (defect) از شیوه های کامپیوتری همانند CAD استفاده می شود. داربست پردازش شده بر اساس این الگو مورفولوژی دقیقی از ناحیه معیوب بافت خواهد داشت.

در ذیل خلاصه ای از روش های مهم ساخت داربست آمده است.

قالب گیری حلال (Solvent Casting)‍: قالب گیری حلال یک روش ساده برای تولید داربست مهندسی بافت است. در این روش پلیمر در یک حلال مناسب حل شده و در قالب ریخته می شود. سپس حلال حذف گردیده و حالت پلیمر را در شکل مورد نظر حفظ می‌کند. این شیوه به شکل های قابل حصول محدود می شود. غالباً تنها طرح های قابل شکل‌گیری در این روش صفحات صاف و لوله ها هستند. البته با قراردادن صفحات صاف روی هم نیز می توان به اشکال پیچیده تر دست یافت. در این شیوه می توان با شستن ذراتی مانند کریستال های نمک کاشته شده درون پلیمر که Progen خوانده می شود، داربست را به صورت متخلخل درآورد. مزیت اصلی قالب گیری حلال سادگی ساخت بدون احتیاج به تجهیزات خاص است. همچنین از آنجا که عمل ساخت در دمای اتاق انجام می گیرد نرخ تخریب پلیمر زیست تخریب پذیر به روش قالب گیری حلال کمتر از فیلم های قالب گرفته شده از طریق تراکم خواهد بود. عیب اصلی قالب گیری حلال باقی ماندن احتمالی حلال سمی درون پلیمر است. برای رفع این عیب باید به پلیمر اجازه داد تا کاملاً خشک شده و سپس با استفاده از خلاء حلال باقی مانده را خارج نمود. عیب دیگر این روش احتمال تغییر یافتن ماهیت پروتئین و دیگر مولکول های موجود در پلیمر به واسطه استفاده از حلال است. (شکل 2)

 

 

 

 

لایه سازی غشاء (Membrane Lamination): لایه سازی غشاء روش های درمانی از طریق سلول های کپسوله شده برای رهایش گسترده ای از محصولات به دست آمده از مولکول های کوچک (برای مثال، دوپامین، انکفالین ها) تا محصولاتی با ژن های بسیار بزرگ (مانند فاکتورهای رشد، ایمیونوگلوبولین ها) را در بر می گیرد. رهایش مواد فعال در مناطق خاصی از بدن به طور سنتی توسط کپسول های پلیمری تخریب پذیر و غیر تخریب پذیر که حاوی یک یا چند دارو هستند احاطه شده است. در این حوزه مواد در حین ساخت با یک ماتریس پلیمری ترکیب شده و سپس بعد از مدت زمانی مشخص از میان ماده (diffusion) و یا در خلال تخریب ماده (erusion) آزاد می شوند. در این جا کنترل مناسب کنتیک های آزاد شده از اهمیت خاصی برخوردار است. یک مثال در این مورد کنتیک های رها شده مرتبه صفر به دست آمده از میله های کوپلیمر استات اتیلن- ونیل (EVAc) به کار رفته در رهایش عامل های شیمی درمانی در مغز است. در طول دو دهه اخیر محققان تلاش کرده اند که مواد را از ناقل های رهایش هیبریدی زیست مصنوعی (bioartificial) که شامل لایه های غشا بر سطح اجزاء سلولی کپسوله شده که درون غشا هستند آزاد کنند. کاربرد و هدف اصلی سلول های کپسوله شده، درمان دردهای مزمن بیماری پارکینسون و دیابت نوع I، همچنین ناتوانی های دیگر ناشی از افت ترشح عملکرد سلول است که با کاشت اندام یا درمان های دارویی به طور  کامل قابل مداوا نیستند. کپسوله کردن بافت عموما به دو شکل انجام می گیرد: لایه بندی غشا میکروکپسوله و ماکرو متخلخل در میکرو کپسوله سازی یک یا چند سلول با پراکندگی‌های کروی فراوان (با قطر 100-300 nm) کپسوله می شوند. در ماکرو کپسوله سازی تعداد زیادی از سلول ها یا توده های سلولی در یک یا چند کپسول نسبتاً بزرگ کاشته می شوند. مزیت روش دوم، پایداری شیمیایی و مکانیکی و سادگی بازیافت در صورت نیاز است. اولین دستگاهی که به این روش تأئیدیه ایالت متحده را کسب کرده است دستگاهی به نام کبدیار (Liver assist)

انجماد- خشک سازی (Freeze- Drying): این شیوه برای تولید داربست های PLG بسیار متخلخل با مزیت قابلیت تلفیق رشد پایه پروتئینی و فاکتورهای تفاضلی در زمان پردازش، معرفی شده است. این شیوه قادر به ایجاد داربست هایی با تخلخل بیشتر از 90% و کنترل خلاء و فرج هایی به اندازه 20- 200  است. این روش پردازش شامل ایجاد یک امولسیون از طریق هموژنیزه کردن محلول پلیمر- حلال و آب، سرد کردن سریع امولسیون جهت حفظ ساختار حالت مایع و حذف حلال و آب در اثر انجماد و خشک سازی است. (شکل 3)

عنوان

صفحه

  • پیشگفتار

1

  • نتایج قانونمند و استاندارد شده

5

  • گزینش و جداسازی سلول

35

  • تولید داربست‏های پلیمری: قالب گیری حلال

72

  • تولید داربست‏های پلیمری: لایه سازی غشاء

84

  • تولید داربست‏های پلیمری: انجماد - خشک سازی

106

  • تولید داربست‏های پلیمری: اشکال کامپوزیت پلیمر- سرامیک

121

  • تولید داربست‏های پلیمری: جداسازی فاز

142

  • تولید داربست‏های پلیمری: پلیمریزاسیون (بسپارش)

162

  • تولید داربست‏های پلیمری: پردازش اسفنج گازی

176

  • بر هم کنش‏های سلولی سطح مصنوعی: بیومواد خود مجتمع

192

  • بر هم کنش‏های سلولی سطح مصنوعی: چسبندگی سلول هدف

216


دانلود با لینک مستقیم


ساخت داربست های مهندسی بافت به روش Gas Foaming

مقالة: نگاهی بر مهندسی ارزش و نگهداری و تعمیرات (کدینگ در نگهداری و تعمیرات) (نرم افزارهای نگهداری و تعمیرات)

اختصاصی از هایدی مقالة: نگاهی بر مهندسی ارزش و نگهداری و تعمیرات (کدینگ در نگهداری و تعمیرات) (نرم افزارهای نگهداری و تعمیرات) دانلود با لینک مستقیم و پر سرعت .

مقالة: نگاهی بر مهندسی ارزش و نگهداری و تعمیرات (کدینگ در نگهداری و تعمیرات) (نرم افزارهای نگهداری و تعمیرات)


مقالة: نگاهی بر مهندسی ارزش و نگهداری و تعمیرات (کدینگ در نگهداری و تعمیرات) (نرم افزارهای نگهداری و تعمیرات)

مقاله کامل بعد از پرداخت وجه

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 96

 

فهرست:

مهندسی ارزش

روند شکل­گیری و توسعه مهندسی ارزش

مراحل مهندسی ارزش در نگهداری و تعمیرات

نقش مهندسی صنایع در مدیریت نگهداری و تعمیرات

پشتیبانی در نگهداری و تعمیرات

تدارکات در نگهداری و تعمیرات

کدینگ و نقش آن در نگهداری و تعمیرات

شاخص های ارزیابی فنی اقتصادی فعالیت های نت

شاخصهای ارزیابی قابلیت اطمینان و قابلیت تعمیر

 مقایسه نگهداری و تعمیرات پیشگیرانه (PM) و نگهداری بر اساس وضعیت (CM)

هزینه های نگهداری و تعمیرات چیست و چگونه قابل پیش بینی می باشد؟

تخمین هزینه های نگهداری و تعمیرات

استاندارد سازی در نت

تمیزکاری رکن اساسی نگهداری است

کدینگ و نگهداری و تعمیرات

CMMS و آسیب‌شناسی مکانیزاسیون سیستم‌های نت

نرم افزارهای طراحی شده جهت تعمیرات و نگهداری و ویژگی های این برنامه ها

 

مهندسی ارزش

امروزه به طور مداوم با گسترش فعالیتها و کاهش منابع ـ اعم از مالی، انسانی و زمانی ـ روبه‌رو هستیم. تلاش برای دستیابی به نتایج با کیفیت، با صرف هزینه و زمان کمتر، از آرزوهای دیرینه بشر بوده و در ادوار مختلف، بخشی از نیرو و اندیشه انسان را به خود اختصاص داده است. مهندسی ارزش به عنوان پاسخی عام به نیاز بشر برای دستیابی به نتایج مناسب با صرف منابع مناسب، رواج و کاربرد یافته است. در مقاله حاضر تلاش شده ضمن معرفی و تبیین مهندسی ارزش و روشن ساختن جنبه‌های مختلف آن، به برخی از مهمترین کاربردهای آن در حوزه فعالیتهای کتابداری و اطلاع‌رسانی اشاره شود. رویکرد این مقاله از منظر ورود به بحث است و پژوهش و گزارش مفصل-تر در این خصوص در آینده صورت خواهد گرفت.

مهندسی ارزش چیست؟

مهندسی ارزش [2]، تلاشی است سازمان‌یافته که با هدف بررسی و تحلیل تمام فعالیتهای یک طرح، ـ از زمان شکل‌گیری تفکر اولیه تا مرحله طراحی و اجرا و سپس راه‌اندازی و بهره‌برداری ـ  انجام می¬شود و به عنوان یکی از کارآمدترین و مهم¬ترین روشهای اقتصادی در عرصه فعالیتهای بشر، شناخته شده است.

 مهندسی ارزش در چارچوب مدیریت پروژه، ضمن اینکه به تمام اجزای فعالیتها توجه می¬کند، هیچ بخشی از کار را قطعی و مسلم نمی¬داند. هدف مهندسی ارزش، زمان کمتر برای رسیدن به مرحله بهره‌برداری، بدون افزایش هزینه‌ها یا کاهش کیفیت کار است.

افزایش پیوسته هزینه¬های اجرایی و توسعه روز افزون فن¬آوری، حذف آن بخش از هزینه¬ها را که نقشی در ارتقای کیفیت ندارند و از لحاظ اجرایی نیز غیر ضروری می¬باشند، الزامی ساخته است. به کارگیری مهندسی ارزش در طرحهای اجرایی، با توجه به پیچیدگی کارها بویژه در طرحهای بزرگ اجرایی، می‌تواند به ابزار بی‌چون و چرای مدیریت در کنترل هزینه¬ها تبدیل شود. هدف این روش، از میان برداشتن یا اصلاح هر چیزی است که موجب تحمیل هزینه¬های غیر ضروری می¬شود، بدون آنکه آسیبی به کارکردهای اصلی و اساسی طرح وارد آید. مهندسی ارزش، مجموعه¬ای متشکل از چندین روش فنی است که با بازنگری و تحلیل اجزای کار، قادر خواهد بود اجرای کامل طرح را با کمترین هزینه و زمان ممکن تحقق بخشد. هزینه طرح در این مقوله نه تنها هزینه-های طراحی و اجرا، بلکه هزینه¬های مالکیت شامل بهره‌برداری، تعمیر و نگهداری و هزینه-های مصرف در سراسر دوره عمر مفید طرح را نیز شامل می¬شود. روشهای مهندسی ارزش می¬تواند موجب اصلاح و ارتقای کیفیت فرایندهای تولید صنعتی و انجام طراحی‌های جدید در هر مرحله از یک پروژه اجرایی گردد. برخلاف آنچه در صنایع تولیدی مرسوم است و می¬توان یک روش اصلاحی را همواره در مراحل بعدی تولید یک محصول خاص نیز اجرا کرد، در طرحهای ساختمانی که هر سازه دارای شرایط ویژه¬ای است، حدود به کارگیری یک روش اصلاحی مهندسی ارزش، محدود به همان پروژه است.


دانلود با لینک مستقیم


مقالة: نگاهی بر مهندسی ارزش و نگهداری و تعمیرات (کدینگ در نگهداری و تعمیرات) (نرم افزارهای نگهداری و تعمیرات)

تحقیق درمورد درک مفهوم نرم افزار (و سرانجام درکی از مهندسی نرم افزار) 58 ص

اختصاصی از هایدی تحقیق درمورد درک مفهوم نرم افزار (و سرانجام درکی از مهندسی نرم افزار) 58 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 58

 

ویژگیهای نرم افزار

برای درک مفهوم نرم افزار (و سرانجام درکی از مهندسی نرم افزار)، بررسی آن دسته از ویژگیهای نرم افزار که آن را از دیگر چیزهای ساخته دست بشر متمایز می سازد، اهمیت دارد. هنگامی که سخت افزاری ساخته می شود، فرآیند آفرینش بشری (تحلیل، طراحی، ساخت، آزمون)، سرانجام به یک شکل فیزیکی منتهی می شود. اگر یک کامپیوتر جدید می سازیم، طرحهای اولیه، ترسیمات طراحی رسمی و نمونه های اولیه به یک محصول فیزیکی (تراشه ها، مدارها، منبع تعذیه و غیره) تکامل می یابند.

نرم افزار یک عنصر سیستمی منطقی است نه فیزیکی. از این رو، نرم افزار دارای ویژگیهایی است که تفاوت چشمگیری با ویژگیهای سخت افزار دارند.

1. نرم افزار، مهندسی و بسط داده می شود و چیزی نیست که به معنای کلاسیک کلمه، ساخته شود.

گرچه شباهتهایی میان بسط نرم افزار و ساخت سخت افزار وجود دارد، این دو عمل تفاوت بنیادی دارند. در هر دو عمل، کیفیت بالا از طریق طراحی خوب به دست می آید، ولی فاز ساخت برای سخت افزار باعث بروز مشکلات کیفیتی می شود که برای نرم افزار وجود ندارند (یا به راحتی قابل رفع هستند). هر دو عمل وابسته به انسان هستند، ولی رابطه میان انسان و کاری که انجام می شود، کاملاً متفاوت است (فصل 7). هر د. عمل مستلزم ساخت یک ((محصول)) هستند ولی روشها متفاوت است.

هزینه های نرم افزار در مهندسی آن متمرکز است. این بدان معناست که پروژه های نرم افزاری را نمی توان همانند پروژه های تولید معمولی مدیریت کرد.

2. نرم افزار فرسوده نمی شود.

شکل 1-1 نمودار آهنگ شکست را به صورت تابعی از زمان برای سخت افزار نشان می دهد. این رابطه که غالباً ((منحنی وانی)) نامیده می شود، نشان می دهد که سخت افزار، آهنگ شکست نسبتاً شدیدی در ابتدای عمر خود نشان می دهد (این شکستها را غالباً می توان به عیوب طراحی و تولید نسبت داد)؛ این عیوب تصحیح می شوند و آهنگ شکست برای یک دورۀ زمانی به حدی ثابت نزول می کند (که امید می رود، بسیار پایین باشد). با گذشت زمان، سخت افزار شروع به فرسایش کرده دوباره آهنگ شکست شدت می گیرد.

نرم افزار نسبت به ناملایمات محیطی که باعث فرسایش نرم افزار می شود، نفوذپذیر نیست. بنابراین، در تئوری، منحنی شکست برای نرم افزار باید شکل منحنی ایده آل شکل 2-1 را به خود بگیرد. عیوب کشف نشده باعث آهنگ شکست شدید، در ابتدای عمر برنامه می شود. ولی، این عیوب برطرف می شوند (با این امید که خطاهای دیگر وارد نشود) و منحنی به صورتی که نشان داده شده است، هموار می شود. منحنی ایده آل نسبت به منحنی واقعی مدلهای شکست نرم افزار، بسیار ساده تر است (برای اطلاعات بیشتر، فصل 8 را ببینید). ولی، معنای آن واضح است، نرم افزار هرگز دچار فرسایش نمی شود بلکه فاسد می شود!

این تناقض ظاهری را می توان با در نظر گرفتن ((منحنی واقعی)) به بهترین وجه توضیح داد (شکل 2-1). نرم افزار در دوران حیات خود دستخوش تغییر می شود (نگهداری). با اعمال این تغییرات، احتمال دارد که برخی عیوب جدید وارد شوند و باعث خیز منحنی آهنگ شکست شوند (شکل 2-1). پیش از آن که منحنی بتواند به آهنگ شکست منظم اولیه خود برسد، تغییر دیگری درخواست می شود که باعث خیز دوباره منحنی می شود. حداقل میزان شکست به آهستگی افزایش می یابد – نرم افزار در اثر تغییر فاسد می شود.

یک جنبۀ دیگر از فرسایش نیز اختلاف میان سخت افزار و نرم افزار را نشان می دهد. هنگامی که یک قطعه از سخت افزار فرسوده می شود، با یک قطعه یدکی تعویض می شود. ولی نرم افزار قطعات یدکی ندارد. هر شکست نرم افزار نشانگر خطایی در طراحی یا فرآیندی است که طراحی از طریق آن به کدهای قابل اجرا روی ماشین تبدیل می شود. از این رو، نگهداری نرم افزار به مراتب پیچیده تر از نگهداری سخت افزار است.

3. گرچه صنعت در حال حرکت به سوی مونتاژ قطعات است، اکثر نرم افزارها همچنان به صورت سفارشی ساخته می شوند.

شیوه ای را در نظر بگیرید که در آن یک سخت افزار کنترلی برای یک محصول کامپیوتری طراحی و ساخته می شود. مهندس طراح یک الگوی ساده از مدار دیجیتالی رسم می کند، قدری تحلیل بنیادی انجام می دهد تا از عملکرد صحیح اطمینان حاصل کند، و سپس به قفسۀ حاوی کاتالوگهای قطعات رجوع می کند. پس از انتخاب همۀ قطعات می تواند آنها را سفارش دهد.

به موازات تکامل یک رشته مهندسی، مجموعه ای از قطعات طراحی استاندارد ایجاد می شود. پیچ های استاندارد و مدارات مجتمع فقط دو مورد از هزاران قطعۀ استانداردی هستند که مهندسان مکانیک و برق در طراحی سیستمهای جدید به کار می برند. قطعات قابل استفاده مجدد طوری طراحی شده اند که مهندس بتواند بر عناصر واقعاً جدید یک طراحی، یعنی قطعاتی از طراحی که ارائه دهنده چیزی تازه هستند، تمرکز داشته باشد. در جهان سخت افزار، استفاده مجدد از قطعات، بخشی طبیعی از فرآیند مهندسی است. در مهندسی نرم افزار این امر به تازگی مورد توجه قرار گرفته است.

یک قطعه نرم افزاری باید چنان طراحی و پیاده سازی شود که بتوان در برنامه های متفاوت از آن بهره برد. در دهۀ 1960، کتابخانه هایی از زیرروال های علمی ساختیم که در آرایۀ گسترده ای از کاربردهای مهندسی و علمی قابل استفاده بودند. این کتابخانه ها از الگوریتم هایی معین به شیوه ای کارامد استفاده می کردند، ولی دامنه کاربرد محدودی داشتند. امروزه، ایدۀ استفاده مجدد نه تنها الگوریتم ها، بلکه ساختمان داده ها را نیز در بر می گیرد. قطعات مدرن قابل استفاده مجدد، هم داده ها و هم پردازشی را که در مورد آنه اعمال می گردد، پنهان سازی کرده مهندس نرم افزار را قادر می سازد تا از قطعات قابل استفادۀ دوباره، برنامه های کاربردی جدید بسازد. برای مثال، واسطهای کاربر گرافیکی امروزی با استفاده از قطعات قابل استفاده مجدد ساخته می شوند که ایجاد پنجره های گرافیکی، منوهای باز شونده و انواع راهکارهای محاوره را میسر می سازند.

کاربردهای نرم افزار

نرم افزار را در وضعیتی می توان به کار برد که در آن یک مجموعه مراحل از پیش تعیین شده (یعنی یک الگوریتم) تعریف شده باشد (استثنائات قابل ملاحظه در این خصوص، نرم افزارهای سیستم های خبره و نرم افزارهای شبکه عصبی اند). محتوای اطلاعاتی و قطعیت اطلاعاتی عوامل مهمی در تعیین ماهیت کاربرد یک نرم افزار هستند. منظور از محتوا، معنی و شکل اطلاعات ورودی و خروجی است. برای مثال، در بسیاری کاربردهای تجاری، از داده


دانلود با لینک مستقیم


تحقیق درمورد درک مفهوم نرم افزار (و سرانجام درکی از مهندسی نرم افزار) 58 ص