هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله نظریه پیچیدگی

اختصاصی از هایدی دانلود مقاله نظریه پیچیدگی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله نظریه پیچیدگی


دانلود مقاله نظریه پیچیدگی

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

چکیده:

پیچیدگی جهان در تضاد با سادگی قوانین فیزیکی قراردارد. در سالهای اخیر رفتارهای غیر خطی و پویای سیستمها به طور وسیع مطالعه شده است، یعنی رفتارهایی که منجر به پیچیدگی و در نهایت آشوب می شوند. مطالعة این رفتارها، منتهی به وضع قوانین جدیدی در طبیعت نشده ولی باعث شدهاند تا بتوانیم قوانین موجود را عمیقتر درک کنیم. یکی از نکات جالب توجه در پیچیدگی این است که به رغم تصورات پیشین، قوانین ساده میتوانند منجر به بروز رفتارهای بسیار پیچیده شوند. این موضوع میتواند منجر به شناخت عمیقتر عملکرد سیستمها و رفتارهای اجتماعی و سازمانی شود. از همین روست که در حال حاضر اندازهگیری پیچیدگی و راههای کاهش آن در سازمانها و فرآیندهای تصمیم گیری به یکی از مباحث روز تبدیل شده است. همین گستردگی مبحث پیچیدگی باعث شده است که مشارکت تمام علوم نظیر ریاضایت، فیزیک، مکانیک شارهها، شیمی، مدیریت در تحلیل آن اجتناب ناپذیر شود.در مقالة حاضر سعی شده است تا کلیاتی از پیچیدگی و انواع آن ارائه شود و نقش آن در طبیعت و سیستمهای تولیدی مورد مطالعه قرار گیرد.کلید واژه ها: پیچیدگی، پیچیدگی ایستا، پیچیدگی پویا، خود سازماندهی، آشوب مقدمه:

یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده می‌شود و نه محتوای تجربهاش. بهکارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازهگیری و کمی کردن نیز بهوجود می آورد.نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمی‌شناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازه‌ای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسة غیر اقلیدسی ریمان، آمار بولتزمن و نظریة مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریه‌های جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند.

نظریة پیچیدگی:

بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. بهطور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل می‌دهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمرة آنها قرار می‌گیرند.پیچیدگی ایستا (نوع اول). براساس نظریة پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونه‌ای سازمان دهی می‌کنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریة پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. ساده‌ترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشة کامپیوتر نگاه کرد و آن را پیچیده یافت. می‌توان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). می‌توان همین کار را با اشکال زندة حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی، فاقد مهمترین مسئلة تفکر در پیچیدگی هستند و آن این است که آیا واقعاًٌ پیچیدگی به تعداد اجزا بستگی دارد و چرا پیچیدگی سیستمی مثلاً با 100 جزء متفاوت با سیستم دیگر با همین تعداد اجزاست.برای نگرشی دقیقتر به این سئوال، نیازمندیم به دنبال الگوها و آمارهای کمیتها باشیم. روشن است که پیچیدگی ترتیبی از 50 توپ سفید و 50 توپ سیاه، از پیچیدگی 5 توپ سیاه، 17 توپ سفید، 3 توپ سیاه، 33 توپ سفید و 42 توپ سیاه کمتر است. با این حال معنای چنین ترتیبی نامشخص است. آیا ترتیب تصادفی است یا معنادار؟ هنگامی که چنین تحلیلهایی به سه بعد تعمیم داده می‌شوند و بیش از یک مشخصه برای هر جز تعریف می‌شود (اندازه، چگالی، شکل) پیچیدگیهای احتمالی به نحوه غیر قابل تصوری افزایش می یابند و توانایی ریاضیات موسوم را به چالش فرا میخوانند. در اینجا صرفاً یک سطح مورد نظر قرار داشت ولی در طبیعت سطوح مختلفی از ساختار در تمام سیستمها وجود دارند و این سطوح باعث افزایش پیچیدگی خواهند شد (پیچیدگی یک مولکول، به علاوة سلول، به علاوة ارگانیسم، به علاوة اکوسیستم، به علاوة سیارة زمین و ...). این پدیده باعث می‌شود تا ریاضیات پیچیدگی ایستا نیز دشوار باشد.پیچیدگی پویا (نوع دوم). با افزایش بعد چهارم، یعنی زمان، موقعیت بسیار بغرنجتر خواهد شد. از زاویة دید مثبت، شاید تشخیص الگوها با تغییراتشان در زمان ساده تر از حالت سکون آنها باشد (فصول، ضربان). اما از سوی دیگر ممکن است با اجازه دادن به اجزا برای تغییر با زمان، الگوهای حالت سکونی را که قبلاً شناسایی کرده بودیم و طبقه بندیهای انجام گرفته بر پایة آنها از دست بروند (برگها سبز هستند، به جز در پاییز که زرد می‌شوند و در زمستان که اصلاً وجود ندارند!).

تشخیص عملکرد، یکی از راههای اصلی تحلیل علمی است. پرسش «سیستم چه کاری انجام می‌دهد؟» و به دنبال آن «چگونه این کار را انجام می‌دهد؟» هر دو دارای مفهوم حرکت در زمان هستند. با توجه به ضعف ما در بررسی تجربیات تکرارپذیر، مهم خواهد بود که تشخیص دهیم آیا پدیدة مورد مطالعه ایستاست یا آنکه دارای تغییرات دوره‌ای است. علم همواره با آزمایش و تأیید آزمایشها سروکار دارد و پیشنیاز این امر، داشتن نمونه‌های متعدد است. روابط ریاضی مورد استفاده به گونه‌ای هستند که برای داده‌های یکسان، همواره پاسخهای یکسانی را ارائه می کنند و این یک نکتة اساسی در نظریة پیچیدگی است. ما در بسیاری از اوقات ناچار می‌شویم تا به طور مصنوعی پیچیدگی پدیدة مورد بررسی را کاهش دهیم تا در چارچوب محدودیت فوق قرار گیریم. یک فرد دارای وجوه گوناگونی است ولی، او را با آن دسته از مشخصه‌هایش تعریف می کنیم که در طول زمان بدون تغییر باقی می‌مانند (و یا قابل پیش بینی هستند) نظیر نام، رنگ پوست، ملّیت یا سن، شغل، قد و مانند آنها. نظریة پیچیدگی نیازمند آن است که سیستم را به صورت یک کل مورد بررسی قرار و از آن تعریفی به دست دهیم که تمامی جنبه‌های آن را پوشش دهد و در این نقطه است که روشهای سنتی و ریاضی پاسخگو نخواهند بود.پیچیدگی تکاملی (نوع سوم). یکی از پدیده‌های مهم در اطراف ما پدیده‌های ارگانیک هستند. بهترین مثالهای مربوط به این پدیده‌ها، مربوط به نظریة نوین داروین در انتخاب طبیعی است که طی آن سیستمها در طول زمان تکامل پیدا می‌کنند و سیستمهای دیگری ابداع می‌شوند (مثلاً یک موجود دریایی تبدیل به یک موجود خشکی می‌شود). این شکل از تغییر که ظاهراً منتهایی نیز برای آن قابل تصور نیست، بسیار بغرنجتر از آن است که پیش از این انگاشته می‌شد. می‌توان همین مفهوم تغییرات غیردوره‌ای را با مواردی چون سیستمهای ایمنی بدن، آموزش، هنر و کهکشانها نیز توسعه داد. طبقه بندی پیچیدگی، عملاً به معنای برداشتن قدم دیگری، به سوی تاریکی خواهد بود چرا که اگر امکان شمارش مصداقهای آن وجود نداشته باشد چگونه می‌توان نام علم را بر آن نهاد؟

پاسخ این سئوال به مبحث الگو باز می‌گردد. در هر سیستم پیچیده، ترکیبات بسیار زیادی از اجزا می‌توانند وجود داشته باشند و در حقیقت می‌توان مشاهده کرد که بسیاری از این ترکیبات پیش از این هرگز در طول حیات جهان وقوع پیدا نکرده‌اند. با بررسی تعداد زیادی از سیستمهای متفاوت، می‌توان شباهتها (الگوها) را در آنها تشخیص داد و طبقه بندی هایی را برای تعریف آنها ایجاد کرد. این تکنیکها، که می توان آنها را آماری دانست، بسیار مناسب اند و راهنمایی‌هایی کلی ارائه می‌کنند، ولی فاقد یک نیازمندی اساسی در کار علمی هستند و آن قابلیت پیش‌بینی است. در به کارگیری علم (فناوری) ما نیازمند آن هستیم که سیستم را به گونه‌ای طراحی و ایجاد کنیم که وظایف خاصی را به انجام برساند واین یعنی خواسته‌ای که به نظر نمی‌آید از دیدگاه تکاملی قابل بررسی و تعمیم باشد.پیچیدگی خود سازمان دهی (نوع چهارم). آخرین شکل سیستم پیچیده، شکلی است که مهمترین و جدیدترین نوع در نظریة پیچیدگی محسوب می‌شود. در اینجا محدودیتهای داخلی سیستمهای بسته (نظیر ماشینها) با تکامل خلاقانة سیستمهای باز (نظیر مردم) با همدیگر تلفیق می‌شوند. در این دیدگاه سیستم با محیط خود تکامل می یابد به گونه‌ای که پس از مدتی، دیگر سیستم در طبقه بندی قبلی خود نمی‌گنجد. در اینجا می‌بایستی عملکردها و وظایف سیستم به گونه‌ای تعریف شوند که چگونگی ارتباط آنها با جهان


دانلود با لینک مستقیم


دانلود مقاله نظریه پیچیدگی

پاورپوینت غیر خطی آشوب و پیچیدگی

اختصاصی از هایدی پاورپوینت غیر خطی آشوب و پیچیدگی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت غیر خطی آشوب و پیچیدگی


پاورپوینت غیر خطی آشوب و پیچیدگی

 

نوع فایل:  ppt _ pptx ( پاورپوینت )

( قابلیت ویرایش )

 


 قسمتی از اسلاید : 

 

تعداد اسلاید : 33 صفحه

به نام خدا غیر خطی،آشوب و پیچیدگی پویایی های سیستم های طبیعی و اجتماعی آنچه ما از سیستم برداشت می کنیم سیستم ها اشیایی هستند با درجه های متفاوتی از پیچیدگی ،اگر چه آنها غالبا از عوامل مختلفی که با یکدیگر در تعاملند شناخته می شوند. شناسایی سیستم ها در همه علوم معمول است.چه طبیعی چه اجتماعی.از سیستم های مکانیکی فیزیک کلاسیک تا فیزیک کوانتوم نظیر اتم،تا سیستم های علوم زیستی نظیر سلول ،و علوم اجتماعی نظیر محیط اقتصادی ،جمعیت و ....بنابراین تلاش برای انتقال مفاهیم و روشهای علوم طبیعی به علوم اجتماعی در جست و جوی شباهت های خاص بین سیستم های طبیعی و اجتماعی می باشد.(کوهن 1993) یک حالت سیستم به معنی مجموعه ای از ارزشها در یک زمان مشخص است. علاقه خاص در پویایی های یک سیستم مشخص، اساسا بوسیله این حقیقت که چه موقع ما در شناخت نمونه در رفتارش موفق می شویم و پس از آن ما می توانیم درباره رفتار آینده سیستم مذکور پیش بینی داشته باشیم،بر اساس تجربیات کسب شده ،توجیه می شود. در تشریح سیستم و پویایی هایش ،ما از زبانی استفاده می کنیم که از نشانه ها و روابط بینشان تشکیل شده.ریاضیات ،زبانی است که اغلب برای فرمول بندی قوانین یا بطور عام تشریح مشاهدات واقعیات،بخصوص آنهایی که به فیزیک مربوط می شوند،مناسب است. علاقه به فرایند های پویایی مشاهده شده در زندگی واقعی به طور قابل ملاحظه ای به توسعه تکنیک های ریاضی از پایان قرن هفدهم کمک کرد.نظیر تولد دیفرانسیل در ابتدا و سپس پیشرفت قابل ملاحظه مکانیک تحلیلی و فیزیک ریاضیاتی ،رشته هایی که بشدت از معادلات دیفرانسیل استفاده می شد.
و در ابتدا باعث پیشرفت زیاد آن رشته ها شد.بعد ها مفاهیم ریاضیاتی به رشته های دیگر به جز فیزیک منتقل شد. خصوصا در اقتصاد ،اولین تلاش ها برای استفاده از معادلات دیفرانسیل به Leon Walras (1874) و سپس Paul Anthony Samuelson(1947) بر می گردد. فیزیکی نگری :اولین تلاش برای تشریح سیستم ها ی اجتماعی با استفاده از روشهای سیستم های طبیعی اولین استفاده قابل ملاحظه از ریاضیات در علوم اجتماعی به Jean-Antoine de Caritat de Condorcet بر می گردد. Condorcet یک برنامه جدید قانونی را پیشنهاد کرد که در آن زمان ،حسابان سیاسی نامیده می شد.و بنابراین ریاضیات اجتماعی شد. بعد از قرن 17 تا قرن 19 این موضوعات مورد نقد قرار می گرفت. سپس این موقعیت در اوایل قرن 19 تغییر کرد. پژو هشگران متعهد در فعالیت های سیاسی ،نظیر Pierre-Simon de Laplace, Jean Baptiste Fourier،Gaspard Monge روشهای ریاضی که شخصا توسعه داده بودند و نتایج عقاید علمیشان بود،در علوم اجتماعی به کار بردند. یک رویکرد فیزیکی ،در واقعیت ، تنها اگر یک تناظر ساختاری محکم در تعامل بین عواملی که یک نوع از سیستم را تشکیل داده اند(مواد،ذرات بنیادی،اتمها،مولکول ها ،سیارات و کهکشانها) و آنهایی که نوع دیگری از سیستم را ساخته اند(افراد،خانواده ها ،کسب و کارها،گروههای اجتماعی ،جمعیت و ...)کار می کند. چنین تناظری ،بطور عام ،هیچگاه ظاهر نمی شود.بنابراین این مقایسه می تواند تنها پدیداری و کاملا سطحی باشد. صرف نظر از موضوعات تئوریک در خصوص تفاوت ها ی اساسی رشته ها ،تشریح توسعه سیستم های اجتماعی در طول خطوط سیستم های طبیعی با انوا

  متن بالا فقط قسمتی از محتوی متن پاورپوینت میباشد،شما بعد از پرداخت آنلاین ، فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود پاورپوینت:  ................... توجه فرمایید !

  • در این مطلب، متن اسلاید های اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید
  • پس از پرداخت هزینه ،ارسال آنی پاورپوینت خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد
  • در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون پاورپوینت قرار نخواهند گرفت.
  • هدف فروشگاه جهت کمک به سیستم آموزشی برای دانشجویان و دانش آموزان میباشد .

 



 « پرداخت آنلاین »


دانلود با لینک مستقیم


پاورپوینت غیر خطی آشوب و پیچیدگی

تحقیق درباره نظریه پیچیدگی

اختصاصی از هایدی تحقیق درباره نظریه پیچیدگی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 15

 

چکیده:

پیچیدگی جهان در تضاد با سادگی قوانین فیزیکی قراردارد. در سالهای اخیر رفتارهای غیر خطی و پویای سیستمها به طور وسیع مطالعه شده است، یعنی رفتارهایی که منجر به پیچیدگی و در نهایت آشوب می شوند. مطالعة این رفتارها، منتهی به وضع قوانین جدیدی در طبیعت نشده ولی باعث شدهاند تا بتوانیم قوانین موجود را عمیقتر درک کنیم. یکی از نکات جالب توجه در پیچیدگی این است که به رغم تصورات پیشین، قوانین ساده میتوانند منجر به بروز رفتارهای بسیار پیچیده شوند. این موضوع میتواند منجر به شناخت عمیقتر عملکرد سیستمها و رفتارهای اجتماعی و سازمانی شود. از همین روست که در حال حاضر اندازهگیری پیچیدگی و راههای کاهش آن در سازمانها و فرآیندهای تصمیم گیری به یکی از مباحث روز تبدیل شده است. همین گستردگی مبحث پیچیدگی باعث شده است که مشارکت تمام علوم نظیر ریاضایت، فیزیک، مکانیک شارهها، شیمی، مدیریت در تحلیل آن اجتناب ناپذیر شود.در مقالة حاضر سعی شده است تا کلیاتی از پیچیدگی و انواع آن ارائه شود و نقش آن در طبیعت و سیستمهای تولیدی مورد مطالعه قرار گیرد.کلید واژه ها: پیچیدگی، پیچیدگی ایستا، پیچیدگی پویا، خود سازماندهی، آشوب مقدمه:

یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده می‌شود و نه محتوای تجربهاش. بهکارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازهگیری و کمی کردن نیز بهوجود می آورد.نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمی‌شناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازه‌ای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسة غیر اقلیدسی ریمان، آمار بولتزمن و نظریة مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریه‌های جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند.

نظریة پیچیدگی:

بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. بهطور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل می‌دهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمرة آنها قرار می‌گیرند.پیچیدگی ایستا (نوع اول). براساس نظریة پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونه‌ای سازمان دهی می‌کنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریة پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. ساده‌ترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشة کامپیوتر نگاه کرد و آن را پیچیده یافت. می‌توان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). می‌توان همین کار را با اشکال زندة حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی، فاقد مهمترین مسئلة تفکر در پیچیدگی هستند و آن این است که آیا واقعاًٌ پیچیدگی به تعداد اجزا بستگی دارد و چرا پیچیدگی سیستمی مثلاً با 100 جزء متفاوت با سیستم دیگر با همین تعداد اجزاست.برای نگرشی دقیقتر به این سئوال، نیازمندیم به دنبال الگوها و آمارهای کمیتها باشیم. روشن است که پیچیدگی ترتیبی از 50 توپ سفید و 50 توپ سیاه، از پیچیدگی 5 توپ سیاه، 17 توپ سفید، 3 توپ سیاه، 33 توپ سفید و 42 توپ سیاه کمتر است. با این حال معنای چنین ترتیبی نامشخص است. آیا ترتیب تصادفی است یا معنادار؟ هنگامی که چنین تحلیلهایی به سه بعد تعمیم داده می‌شوند و بیش از یک مشخصه برای هر جز تعریف می‌شود (اندازه، چگالی، شکل) پیچیدگیهای احتمالی به نحوه غیر قابل تصوری افزایش می یابند و توانایی ریاضیات موسوم را به چالش فرا میخوانند. در اینجا صرفاً یک سطح مورد نظر قرار داشت ولی در طبیعت سطوح مختلفی از ساختار در تمام سیستمها وجود دارند و این سطوح باعث افزایش پیچیدگی خواهند شد (پیچیدگی یک مولکول، به علاوة سلول، به علاوة ارگانیسم، به علاوة اکوسیستم، به علاوة سیارة زمین و ...). این پدیده باعث می‌شود تا ریاضیات پیچیدگی ایستا نیز دشوار باشد.پیچیدگی پویا (نوع دوم). با افزایش بعد چهارم، یعنی زمان، موقعیت بسیار بغرنجتر خواهد شد. از زاویة دید مثبت، شاید تشخیص الگوها با تغییراتشان در زمان ساده تر از حالت سکون آنها باشد (فصول، ضربان). اما از سوی دیگر ممکن است با اجازه دادن به اجزا برای تغییر با زمان، الگوهای حالت سکونی را که قبلاً شناسایی کرده بودیم و طبقه بندیهای انجام گرفته بر پایة آنها از دست بروند (برگها سبز هستند، به جز در پاییز که زرد می‌شوند و در زمستان که اصلاً وجود ندارند!).

تشخیص عملکرد، یکی از راههای اصلی تحلیل علمی است. پرسش «سیستم چه کاری انجام می‌دهد؟» و به دنبال آن «چگونه این کار را انجام می‌دهد؟» هر دو دارای مفهوم حرکت در زمان هستند. با توجه به ضعف ما در بررسی تجربیات تکرارپذیر، مهم خواهد بود که تشخیص دهیم آیا پدیدة مورد مطالعه ایستاست یا آنکه دارای تغییرات دوره‌ای است. علم همواره با آزمایش و تأیید آزمایشها سروکار دارد و پیشنیاز این امر، داشتن نمونه‌های متعدد است. روابط ریاضی مورد استفاده به گونه‌ای هستند که برای داده‌های یکسان، همواره پاسخهای یکسانی را ارائه می کنند و این یک نکتة اساسی در نظریة پیچیدگی است. ما در بسیاری از اوقات ناچار می‌شویم تا به طور مصنوعی پیچیدگی پدیدة مورد بررسی را کاهش دهیم تا در چارچوب محدودیت فوق قرار گیریم. یک فرد دارای وجوه گوناگونی است ولی، او را با آن دسته از مشخصه‌هایش تعریف می کنیم که در طول زمان بدون تغییر باقی می‌مانند (و یا قابل پیش بینی هستند) نظیر نام، رنگ پوست، ملّیت یا سن، شغل، قد و مانند آنها. نظریة پیچیدگی نیازمند آن است که سیستم را به صورت یک کل مورد بررسی قرار و از آن تعریفی به دست دهیم که تمامی جنبه‌های آن را پوشش دهد و در این نقطه است که روشهای سنتی و ریاضی پاسخگو نخواهند بود.پیچیدگی تکاملی (نوع سوم). یکی از پدیده‌های مهم در اطراف ما پدیده‌های ارگانیک هستند. بهترین مثالهای مربوط به این پدیده‌ها، مربوط به نظریة نوین داروین در انتخاب طبیعی است که طی آن سیستمها در طول زمان تکامل پیدا می‌کنند و سیستمهای دیگری ابداع می‌شوند (مثلاً یک موجود دریایی تبدیل به یک موجود خشکی می‌شود). این شکل از تغییر که ظاهراً منتهایی نیز برای آن قابل تصور نیست، بسیار بغرنجتر از آن است که پیش از این انگاشته می‌شد. می‌توان همین مفهوم تغییرات غیردوره‌ای را با مواردی چون سیستمهای ایمنی بدن، آموزش، هنر و کهکشانها نیز توسعه داد. طبقه بندی پیچیدگی، عملاً به معنای برداشتن قدم دیگری، به سوی تاریکی خواهد بود چرا که اگر امکان شمارش مصداقهای آن وجود نداشته باشد چگونه می‌توان نام علم را بر آن نهاد؟

پاسخ این سئوال به مبحث الگو باز می‌گردد. در هر سیستم پیچیده، ترکیبات بسیار زیادی از اجزا می‌توانند وجود داشته باشند و در حقیقت می‌توان مشاهده کرد که بسیاری از این ترکیبات پیش از این هرگز در طول حیات جهان وقوع پیدا نکرده‌اند. با بررسی تعداد زیادی از سیستمهای متفاوت، می‌توان شباهتها (الگوها) را در آنها تشخیص داد و طبقه بندی هایی را برای تعریف آنها ایجاد کرد. این تکنیکها، که می توان آنها را آماری دانست، بسیار مناسب اند و راهنمایی‌هایی کلی ارائه می‌کنند، ولی فاقد یک نیازمندی اساسی در کار علمی هستند و آن قابلیت پیش‌بینی است. در به کارگیری علم (فناوری) ما نیازمند آن هستیم که سیستم را به گونه‌ای طراحی و ایجاد کنیم که وظایف خاصی را به انجام برساند واین یعنی خواسته‌ای که به نظر نمی‌آید از دیدگاه تکاملی قابل بررسی و تعمیم باشد.پیچیدگی خود سازمان دهی (نوع چهارم). آخرین شکل سیستم پیچیده، شکلی است که مهمترین و جدیدترین نوع در نظریة پیچیدگی محسوب می‌شود. در اینجا محدودیتهای داخلی سیستمهای بسته (نظیر ماشینها) با تکامل خلاقانة سیستمهای باز (نظیر مردم) با همدیگر تلفیق می‌شوند. در این دیدگاه سیستم با محیط خود تکامل می یابد به گونه‌ای که پس از مدتی، دیگر سیستم در طبقه بندی قبلی خود نمی‌گنجد. در اینجا می‌بایستی عملکردها و وظایف سیستم به گونه‌ای تعریف شوند که چگونگی ارتباط آنها با جهان


دانلود با لینک مستقیم


تحقیق درباره نظریه پیچیدگی

مقاله درباره پیچیدگی جهان

اختصاصی از هایدی مقاله درباره پیچیدگی جهان دانلود با لینک مستقیم و پر سرعت .

مقاله درباره پیچیدگی جهان


مقاله درباره پیچیدگی جهان

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:15

پیچیدگی جهان

چکیده:

پیچیدگی جهان در تضاد با سادگی قوانین فیزیکی قراردارد. در سالهای اخیر رفتارهای غیر خطی و پویای سیستمها به طور وسیع مطالعه شده است، یعنی رفتارهایی که منجر به پیچیدگی و در نهایت آشوب می شوند. مطالعة این رفتارها، منتهی به وضع قوانین جدیدی در طبیعت نشده ولی باعث شدهاند تا بتوانیم قوانین موجود را عمیقتر درک کنیم. یکی از نکات جالب توجه در پیچیدگی این است که به رغم تصورات پیشین، قوانین ساده میتوانند منجر به بروز رفتارهای بسیار پیچیده شوند. این موضوع میتواند منجر به شناخت عمیقتر عملکرد سیستمها و رفتارهای اجتماعی و سازمانی شود. از همین روست که در حال حاضر اندازهگیری پیچیدگی و راههای کاهش آن در سازمانها و فرآیندهای تصمیم گیری به یکی از مباحث روز تبدیل شده است. همین گستردگی مبحث پیچیدگی باعث شده است که مشارکت تمام علوم نظیر ریاضایت، فیزیک، مکانیک شارهها، شیمی، مدیریت در تحلیل آن اجتناب ناپذیر شود.در مقالة حاضر سعی شده است تا کلیاتی از پیچیدگی و انواع آن ارائه شود و نقش آن در طبیعت و سیستمهای تولیدی مورد مطالعه قرار گیرد.
کلید واژه ها: پیچیدگی، پیچیدگی ایستا، پیچیدگی پویا، خود سازماندهی، آشوب
 مقدمه:

یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده می‌شود و نه محتوای تجربهاش. بهکارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازهگیری و کمی کردن نیز بهوجود می آورد.
نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمی‌شناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازه‌ای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسة غیر اقلیدسی ریمان، آمار بولتزمن و نظریة مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریه‌های جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند.

نظریة پیچیدگی:

بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. بهطور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل می‌دهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمرة آنها قرار می‌گیرند.
پیچیدگی ایستا (نوع اول). براساس نظریة پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونه‌ای سازمان دهی می‌کنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریة پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. ساده‌ترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشة کامپیوتر نگاه کرد و آن را پیچیده یافت. می‌توان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). می‌توان همین کار را با اشکال زندة حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی، فاقد مهمترین مسئلة تفکر در پیچیدگی هستند و آن این است که آیا واقعاًٌ پیچیدگی به تعداد اجزا بستگی دارد و چرا پیچیدگی سیستمی مثلاً با 100 جزء متفاوت با سیستم دیگر با همین تعداد اجزاست.برای نگرشی دقیقتر به این سئوال، نیازمندیم به دنبال الگوها و آمارهای کمیتها باشیم. روشن است که پیچیدگی ترتیبی از 50 توپ سفید و 50 توپ سیاه، از پیچیدگی 5 توپ سیاه، 17 توپ سفید، 3 توپ سیاه، 33 توپ سفید و 42 توپ سیاه کمتر است. با این حال معنای چنین ترتیبی نامشخص است. آیا ترتیب تصادفی است یا معنادار؟ هنگامی که چنین تحلیلهایی به سه بعد تعمیم داده می‌شوند و بیش از یک مشخصه برای هر جز تعریف می‌شود (اندازه، چگالی، شکل) پیچیدگیهای احتمالی به نحوه غیر قابل تصوری افزایش می یابند و توانایی ریاضیات موسوم را به چالش فرا میخوانند. در اینجا صرفاً یک سطح مورد نظر قرار داشت ولی در طبیعت سطوح مختلفی از ساختار در تمام سیستمها وجود دارند و این سطوح باعث افزایش پیچیدگی خواهند شد (پیچیدگی یک مولکول، به علاوة سلول، به علاوة ارگانیسم، به علاوة اکوسیستم، به علاوة سیارة زمین و ...). این پدیده باعث می‌شود تا ریاضیات پیچیدگی ایستا نیز دشوار باشد.
پیچیدگی پویا (نوع دوم). با افزایش بعد چهارم، یعنی زمان، موقعیت بسیار بغرنجتر خواهد شد. از زاویة دید مثبت، شاید تشخیص الگوها با تغییراتشان در زمان ساده تر از حالت سکون آنها باشد (فصول، ضربان). اما از سوی دیگر ممکن است با اجازه دادن به اجزا برای تغییر با زمان، الگوهای حالت سکونی را که قبلاً شناسایی کرده بودیم و طبقه بندیهای انجام گرفته بر پایة آنها از دست بروند (برگها سبز هستند، به جز در پاییز که زرد می‌شوند و در زمستان که اصلاً وجود ندارند!).


دانلود با لینک مستقیم


مقاله درباره پیچیدگی جهان

مقاله نظریه پیچیدگی

اختصاصی از هایدی مقاله نظریه پیچیدگی دانلود با لینک مستقیم و پر سرعت .

مقاله نظریه پیچیدگی


مقاله نظریه پیچیدگی

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:15

چکیده:

پیچیدگی جهان در تضاد با سادگی قوانین فیزیکی قراردارد. در سالهای اخیر رفتارهای غیر خطی و پویای سیستمها به طور وسیع مطالعه شده است، یعنی رفتارهایی که منجر به پیچیدگی و در نهایت آشوب می شوند. مطالعة این رفتارها، منتهی به وضع قوانین جدیدی در طبیعت نشده ولی باعث شدهاند تا بتوانیم قوانین موجود را عمیقتر درک کنیم. یکی از نکات جالب توجه در پیچیدگی این است که به رغم تصورات پیشین، قوانین ساده میتوانند منجر به بروز رفتارهای بسیار پیچیده شوند. این موضوع میتواند منجر به شناخت عمیقتر عملکرد سیستمها و رفتارهای اجتماعی و سازمانی شود. از همین روست که در حال حاضر اندازهگیری پیچیدگی و راههای کاهش آن در سازمانها و فرآیندهای تصمیم گیری به یکی از مباحث روز تبدیل شده است. همین گستردگی مبحث پیچیدگی باعث شده است که مشارکت تمام علوم نظیر ریاضایت، فیزیک، مکانیک شارهها، شیمی، مدیریت در تحلیل آن اجتناب ناپذیر شود.در مقالة حاضر سعی شده است تا کلیاتی از پیچیدگی و انواع آن ارائه شود و نقش آن در طبیعت و سیستمهای تولیدی مورد مطالعه قرار گیرد.
کلید واژه ها: پیچیدگی، پیچیدگی ایستا، پیچیدگی پویا، خود سازماندهی، آشوب
 مقدمه:

یکی از وجوه اساسی علم که آن را از هنر و ادبیات متمایز می کند امکان بیان آن به کمک اعداد و کمی کردن آن با استفاده از روابط ریاضی است.این پدیده چنان فراگیر شده است که بسیاری از اوقات کار علمی براساس کیفیت ریاضیات آن سنجیده می‌شود و نه محتوای تجربهاش. بهکارگیری روابط ریاضی، علاوه بر ایجاد شرایط جدید برای نگرش به پدیدهها (نوآوری)، نوعی سیستم ارزشی برای اندازهگیری و کمی کردن نیز بهوجود می آورد.
نظریة پیچیدگی مطمئناً راه جدیدی برای نگاه کردن به پدیدههاست و به تدریج در حال تغییر دادن تکنیکهای ریاضی سنتی است. به همین دلیل نیز برخی از دانشمندان نظریة پیچیدگی را گنگ و مبهم میدانند و آن را شایستة عنوان علم نمی‌شناسند. نیاز به تکنیکهای جدید ریاضی جهت مواجهه با علوم جدید، موضوع تازه‌ای نیست (ریاضیات نیوتونی و لایبنیتز، توپولوژی پوآنکاره، هندسة غیر اقلیدسی ریمان، آمار بولتزمن و نظریة مجموعههای کانتور). تمام این دیدگاههای جدید در ریاضیات به دلیل نیاز به کمی کردن نظریه‌های جدید علمی که در آن زمان پا به عرصه وجود گذاشته بودند ابداع شدند.

نظریة پیچیدگی:

بهتر است در اینجا نگاهی به اجزای اصلی یک سیستم پیچیده بیندازیم. بهطور کلی هر سیستم پیچیده یک سیستم کاملاً عملکردی است که شامل اجزای متغیر و وابسته به هم است. به بیان دیگر، برخلاف یک سیستم کاملاً سنتی (نظیر هواپیما) اجزا دارای ارتباطات دقیقاًٌ تعریف شده و رفتارهای ثابت یا مقادیر ثابت نیستند و عملکردهای انفرادی آنها نیز ممکن است با روشهای سنتی قابل تبیین نباشد. به رغم این ابهام، این سیستمها بخش اعظم جهان ما را تشکیل می‌دهند و ارگانیسمهای زنده و سیستمهای اجتماعی و حتی بسیاری از سیستمهای غیر ارگانیک طبیعی نیز در زمرة آنها قرار می‌گیرند.
پیچیدگی ایستا (نوع اول). براساس نظریة پیچیدگی اجزایی که دارای برهم کنشهای بحرانی هستند خود را به گونه‌ای سازمان دهی می‌کنند که به سوی ساختارهای تکاملی پیش روند و سلسله مراتبی از خصوصیات سیستمهای غالب را ایجاد کنند. در این نظریه سیستمها را باید به صورت یک کل نگریست و برخلاف دیدگاههای سنتی، از تجزیه و ساده سازی آنها پرهیز کرد. به دلیل وجود عوامل غیر خطی در سیستمهای به شدت وابسته به هم، دیدگاههای سنتی قادر به تجزیه و تحلیل نیستند. در اینجا علتها و معلولها قابل تفکیک از هم نیستند و مجموع اجزا برابر با کل نخواهد شد. رویکرد مورد استفاده در نظریة پیچیدگی بر مبنای تکنیکهای جدید ریاضی قرار دارد که سر منشأ آنها را باید در شاخه های مختلف چون فیزیک، زیست شناسی، هوش مصنوعی، سیاست و ارتباطات راه دور جستجو کرد. ساده‌ترین شکل پیچیدگی که معمولاً توسط ریاضی دانان و دانشمندان مورد مطالعه قرار می گیرد، در ارتباط با سیستمهای ثابت است. در اینجا فرض می کنیم که ساختار مورد نظر در طول زمان تغییر نمی کند. به بیان دیگر، به اصطلاح دانشمندان سیستم، با یک تصویر ثابت از سیستم سرو کار داریم. به عنوان مثال، می توان به یک ریز تراشة کامپیوتر نگاه کرد و آن را پیچیده یافت. می‌توان آن را با یک مدار الکترونیک مرتبط دانست و برای تعیین پیچیدگی نسبی آن، آن را با سیستمهای جانشین مقایسه کرد (مثلاً از نظر تعداد ترانزیستورها). می‌توان همین کار را با اشکال زندة حیات نیز انجام داد و آنها را بر حسب تعداد سلولها، تعداد ژنها و غیره اندازه گیری کرد. تمامی این جنبه های کمی،


دانلود با لینک مستقیم


مقاله نظریه پیچیدگی