هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه روشی نوین برای تشخیص خطای زمین روتور در ژنراتور سنکرون. doc

اختصاصی از هایدی پروژه روشی نوین برای تشخیص خطای زمین روتور در ژنراتور سنکرون. doc دانلود با لینک مستقیم و پر سرعت .

پروژه روشی نوین برای تشخیص خطای زمین روتور در ژنراتور سنکرون. doc


پروژه روشی نوین برای تشخیص خطای زمین روتور در ژنراتور سنکرون. doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 50 صفحه

 

چکیده:

در این مقاله در مورد روش تشخیص خطای زمین برای ماشین های سنکرون و همچنین روش مکان یابی خطای زمین در روتور ماشین سنکرون بحث شده است.

این روش برای ماشین آلاتی که با سیستم تحریک استاتیک کار می کنند مناسب می باشد. در این ماشین، تحریک سیم پیچ میدان توسط یکسوکننده ها از طریق تحریک ترانسفورماتور تغذیه می شود.

مزیت اصلی این تکنیک جدید در شناسایی و تبعیض بین دو جریان AC وDC و یافتن محل خطای زمین بدون نیاز به تزریق سنتی قدرت از طریق منابع خارجی می باشد. از طرفی این روش قابلیت کشف خطا به صورت آنلاین در سیم پیچ روتور را دارد که این امر به نوبه خود موجب کاهش زمان تعمیرو جلوگیری از بروز خطاهای احتمالی دیگرکه به پشتوانه خطای اول شکل می گیرند می شود.

این روش تشخیص بر اساس تجزیه و تحلیل فرکانس ولتاژ یا جریان در امپدانس زمین قرار گرفته شده در ترمینال خنثی ترانسفورماتور تحریک عمل می کند. این تکنیک تشخیص خطا از طریق شبیه سازی کامپیوتری و به صورت تجربی و تست های آزمایشگاهی تایید شده است.

 

مقدمه:

در سیستم های قدرت باید از وسایل حفاظت استفاده شود. وسایل حفاظت سیستم قدرت را در برابر اتصال کوتاه و اضافه بار و به طور کلی در مقابل هر گونه عملیات غیر طبیعی و یا خطا که می تواند برای امکانات و اپراتورها خطرناک باشد محافظت می کند.

سیستم های حفاظتی برای تشخیص خطا در سیستم الکتریکی در استاتور، در روتور و حتی خطای مکانیکی طراحی می شوند. در قسمتهای بعد بررسی خوبی از این تکنیک ها ارائه شده است.

در مورد واحد های تولید ، سیستم حفاظت از منبع تغذیه باید قابل اطمینان و تضمین شده باشد. به این منظور حداقل الزامات برای به دست آوردن حفاظت کافی در برابر خطا یا هر گونه عمل غیر طبیعی باید انجام گیرد.

برخی از روش های تشخیص از دستگاه القا استاتور می باشد که برای ژنراتور سنکرون مناسب می باشد. اخیرا برای ژنراتورهای معمولی همزمان و کابل آسیب دیده ژنراتور سنکرون برخی تحولات خاصی ارائه شده است.

برخی از شایعترین اختلالات در عملکرد ژنراتور سنکرون، مانند لرزش و عدم تعادل در ولتاژ استاتور، ناشی از خطای زمین در روتور است.

به طور کلی، خطای زمین اولیه هیچ گونه صدمه ای به ماشین وارد نمی کند به دلیل این که در این حالت معمولا مدار بر روی زمین نمی افتد. اما از طرفی خطای اول احتمال وقوع خطای دوم را افزایش می دهد. پس از مرحله اول، خطای اولی یک مرجع را برای ولتاژ القا شده در این زمینه را ایجاد می کند که به دنبال آن نگرانی در مورد وقوع خطای زمین در نقاط دیگر زمین افزایش می یابد. در صورت وقوع خطای دوم، بخشی از سیم پیچ های میدان اتصال کوتاه شده و تولید شار نامتعادل می کنند که به تبع آن ارتعاشاتی حاصل می شود که موجب عدم تعادل در ولتاژ استاتور می شود.

تجهیزات تشخیص خطای زمین باید در ژنراتورهای همزمان بتوانند مقادیر غیر طبیعی در متغیرهای الکتریکی همچون ولتاژ بی باری استاتور و یا شار فاصله هوایی را تشخیص دهند. این در حالی است که آنها فقط می توانند خطای دوم را تشخیص دهند.

برای تشخیص زود هنگام خطای اولیه در روتور قبل از صدمه دیدن شدید ژنراتور، در روش تشخیص همزمان برای ژنراتور با سیستم تحریک استاتیک، که در آن سیم پیچ های میدان تحریک توسط یک یکسوساز از طریق یک ترانسفورماتور با یک منبع تغذیه تحریک می شوند این کار را انجام شده است. شکل 1 طرح پیشنهادی را نشان می دهد.

 

فهرست مطالب:

چکیده    

مقدمه    

فصل اول: اصول و روشهای خطایابی  

بخش اول) اصول روش محل خطای زمین روتور

بخش دوم) روش های تشخیص           

بخش سوم) اصول روش تشخیص خطای زمین در روتور   

فصل دوم: شبیه سازی        

بخش چهارم) تجزیه و تحلیل نتایج حاصل از شبیه سازی

فصل سوم: نتایج   

بخش پنجم) نتایج تجربی      

بخش ششم) نتیجه گیری      

منابع و ماخذ

           

منابع و مأخذ:

1) A. Platero, Member, IEEE, Francisco Bl´azquez, Member, IEEE, Pablo Fr´ıas, and Miguel Pardo ” A Novel Rotor Ground-Fault-Detection Technique for Synchronous Machines With Static Excitation” IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 4, DECEMBER 2010

2) Carlos A. Platero, Member, IEEE, Francisco Bl´azquez, Member, IEEE, Pablo Fr´ıas, and Miguel Pardo ” New On-Line Rotor Ground Fault Location Method for Synchronous Machines With Static Excitation” IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 26, NO. 2, JUNE 2011


دانلود با لینک مستقیم


پروژه روشی نوین برای تشخیص خطای زمین روتور در ژنراتور سنکرون. doc

دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون

اختصاصی از هایدی دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون


دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 19

 

سیر تکاملی ژنراتورهای سنکرون

سیر تکاملی ژنراتورهای سنکرون(از ابتدا تا پایان دهه 1980)

هدف از انجام این تحقیق بررسی سیر تحقیقات انجام شده با موضوع طراحی ژنراتور سنکرون است. به این منظور، بررسی مقالات منتشر شده IEEE که با این موضوع مرتبط بودند، در دستور کار قرار گرفت. به عنوان اولین قدم کلیه مقالات مرتبط در دهه‌های مختلف جستجو و بر مبنای آنها یک تقسیم‌بندی موضوعی انجام شد. سپس سعی شد بدون پرداختن به جزییات، سیرتحولات استخراج‌ شود. رویکرد کلی این بوده است که تحولات دارای کاربرد صنعتی بررسی شود.

با توجه به گستردگی موضوع و حجم مطالب، این گزارش در دو بخش ارایه شده است. در بخش اول ابتدا پیشرفتهای اولیه ژنراتورهای سنکرون از آغاز تا دهه 1970 بررسی شده است و در ادامه تحولات دهه‌های 1970 و 1980 به تفصیل مورد توجه قرار گرفته‌اند. در پایان هر دهه یک جمعبندی از کل فعالیتهای صورت گرفته ارایه و سعی شده است ارتباط منطقی پیشرفتهای هر دهه با دهه‌های قبل و بعد بیان شود.

ماشین سنکرون همواره یکی از مهمترین عناصر شبکه قدرت بوده و نقش کلیدی در تولید انرژی الکتریکی و کاربردهای خاص دیگر ایفاء کرده است.

ساخت اولین نمونه ژنراتور سنکرون به انتهای قرن 19 برمی‌گردد. مهمترین پیشرفت انجام شده در آن سالها احداث اولین خط بلند انتقال سه فاز از لافن به فرانکفورت آلمان بود. درکانون این تحول؛ یک هیدروژنراتور سه فاز 210 کیلووات قرار گرفته بود.

علیرغم مشکلات موجود در جهت افزایش ظرفیت وسطح ولتاژ ژنراتورها، در طول سالهای بعد تلاشهای گسترده‌ای برای نیل به این مقصود صورت گرفت.

مهمترین محدودیتها در جهت افزایش ظرفیت، ضعف عملکرد سیستمهای عایقی و نیز روشهای خنک‌سازی بود. در راستای رفع این محدودیتها ترکیبات مختلف عایقهای مصنوعی، استفاده از هیدروژن برای خنک‌سازی و بهینه‌سازی روشهای خنک‌سازی با هوا نتایج موفقیت‌آمیزی را در پی داشت به نحوی که امروزه ظرفیت ژنراتورها به بیش از MVA1600 افزایش یافته است.

در جهت افزایش ولتاژ، ابداع پاورفرمر در انتهای قرن بیستم توانست سقف ولتاژ تولیدی را تا حدود سطح ولتاژ انتقال افزایش دهد به نحوی که برخی محققان معتقدند در سالهای نه چندان دور، دیگر نیازی به استفاده از ترانسفورماتورهای افزاینده نیروگاهی نیست.

همچنین امروزه تکنولوژی ژنراتورهای ابررسانا بسیار مورد توجه است. انتظار می‌رود با گسترش این تکنولوژی در ژنراتورهای آینده، ظرفیتهای بالاتر در حجم کمتر قابل دسترسی باشند.

تاریخچه

ژنراتور سنکرون تاریخچه‌ای بیش از صد سال دارد. اولین تحولات ژنراتور سنکرون در دهه 1880 رخ داد. در نمونه‌های اولیه مانند ماشین جریان مستقیم، روی آرمیچر گردان یک یا دو جفت سیم‌پیچ وجود داشت که انتهای آنها به حلقه‌های لغزان متصل می‌شد و قطبهای ثابت روی استاتور، میدان تحریک را تامین می‌کردند. به این طرح اصطلاحاً قطب خارجی می‌گفتند. در سالهای بعد نمونه دیگری که در آن محل قرار گرفتن میدان و آرمیچر جابجا شده بود مورد توجه قرار گرفت. این نمونه که شکل اولیه ژنراتور سنکرون بود، تحت عنوان ژنراتور قطب داخلی شناخته و جایگاه مناسبی در صنعت‌برق پیدا کرد. شکلهای مختلفی از قطبهای مغناطیسی و سیم‌پیچهای میدان روی رتور استفاده شد، در حالی که سیم‌پیچی استاتور، تکفاز یا سه‌فاز بود. محققان بزودی دریافتند که حالت بهینه از ترکیب سه جریان متناوب با اختلاف فاز نسبت به هم بدست می‌آید. استاتور از سه جفت سیم‌پیچ تشکیل شده بود که در یک طرف به نقطه اتصال ستاره و در طرف دیگر به خط انتقال متصل بودند.

در واقع ایده ماشین جریان متناوب سه فاز، مرهون تلاشهای دانشمندان برجسته‌ای مانند نیکولا تسلا، گالیلئو فراریس، چارلز برادلی، دبروولسکی، هاسلواندر بود.

هاسلواندر اولین ژنراتور سنکرون سه فاز را در سال 1887 ساخت که توانی در حدود 8/2 کیلووات را در سرعت 960 دور بر دقیقه (فرکانس 32 هرتز) تولید می‌کرد. این ماشین دارای آرمیچر سه فاز ثابت و رتور سیم‌پیچی شده چهار قطبی بود که میدان تحریک لازم را تامین می‌کرد. این ژنراتور برای تامین بارهای محلی مورد استفاده قرار می‌گرفت.

در سال 1891 برای اولین بار ترکیب ژنراتور و خط بلند انتقال به منظور تامین بارهای دوردست با موفقیت تست شد. انرژی الکتریکی تولیدی این ژنراتور توسط یک خط انتقال سه فاز از لافن به نمایشگاه بین‌المللی فرانکفورت در فاصله 175 کیلومتری منتقل می‌شد. ولتاژ فاز به فاز 95 ولت، جریان فاز 1400 آمپر و فرکانس نامی 40 هرتز بود. رتور این ژنراتور که برای سرعت 150 دور بر دقیقه طراحی شده بود، 32 قطب داشت. قطر آن 1752 میلیمتر و طول موثر آن 380 میلیمتر بود. جریان تحریک توسط یک ماشین جریان مستقیم تامین می‌شد. استاتور آن 96 شیار داشت که در هر شیار یک میله مسی به قطر 29 میلیمتر قرار می‌گرفت. از آنجا که اثر پوستی تا آن زمان شناخته نشده بود، سیم‌پیچی استاتور متشکل از یک میله برای هر قطب / فاز بود. بازده این ژنراتور 5/96% بود که در مقایسه با تکنولوژی آن زمان بسیار عالی می‌نمود. طراحی و ساخت این ژنراتور را چارلز براون انجام داد.

در آغاز، اکثر ژنراتورهای سنکرون برای اتصال به توربینهای آبی طراحی می‌شدند، اما بعد از ساخت توربینهای بخار قدرتمند، نیاز به توربوژنراتورهای سازگار با سرعت بالا احساس شد. در پاسخ به این نیاز اولین توربورتور در یکی از زمینه‌های مهم در بحث ژنراتورهای سنکرن، سیستم عایقی است. مواد عایقی اولیه مورد استفاده مواد طبیعی مانند فیبرها، سلولز، ابریشم، کتان، پشم و دیگر الیاف طبیعی بودند. همچنین رزینهای طبیعی بدست آمده از گیاهان و ترکیبات نفت خام برای ساخت مواد عایقی مورد استفاده قرارمی‌گرفتند. در سال 1908 تحقیقات روی عایقهای مصنوعی توسط دکتر بایکلند آغاز شد. در طول جنگ جهانی اولی رزین‌های آسفالتی که بیتومن نامیده می‌شدند، برای اولین بار همراه با قطعات میکا جهت عایق شیار در سیم‌پیچهای استاتور توربوژنراتورها مورد استفاده قرار گرفتند. این قطعات در هر دو طرف، با کاغذ سلولز مرغوب احاطه می‌شدند. در این روش سیم‌پیچهای استاتور ابتدا با نوارهای سلولز و سپس با دو لایه نوار کتان پوشیده می‌شدند. سیم‌پیچها در محفظه‌ای حرارت می‌دیدند و سپس تحت خلا قرار می‌گرفتند. بعد از چند ساعت عایق خشک و متخلخل حاصل می‌شد. سپس تحت خلا، حجم زیادی از قیر داغ روی سیم‌پیچ‌ها ریخته می‌شد. در ادامه محفظه با گاز نیتروژن خشک با فشار 550 کیلو پاسکال پر و پس از چند ساعت گاز نیتروژن تخلیه و سیم‌پیچها در دمای محیط خنک و سفت می‌شدند. این فرآیند وی پی‌آی نامیده می‌شد.

در اواخر دهه 1940 کمپانی جنرال الکتریک به منظور بهبود سیستم عایق سیم‌پیچی استاتور ترکیبات اپوکسی را برگزید. در نتیجه این تحقیقات، یک سیستم به اصطلاح رزین ریچ عرضه شد که در آن رزین در نوارها و یا وارنیش مورد استفاده بین لایه‌ها قرار می‌گرفت.

در دهه‌های 1940 تا 1960 همراه با افزایش ظرفیت ژنراتورها و در نتیجه افزایش استرسهای حرارتی، تعداد خطاهای عایقی به طرز چشمگیری افزایش یافت. پس از بررسی مشخص شد علت اکثر این خطاها بروز پدیده جدا شدن نوار یا ترک خوردن آن است. این پدیده به علت انبساط و انقباض ناهماهنگ هادی مسی و هسته آهنی به وجود می‌آمد. برای حل این مشکل بعد از جنگ جهانی دوم محققان شرکت وستینگهاوس کار آزمایشگاهی را بر روی پلی‌استرهای جدید آغاز کرده و سیستمی با نام تجاری ترمالاستیک عرضه کردند.

نسل بعدی عایقها که در نیمه اول دهه 1950 مورد استفاده قرار گرفتند، کاغذهای فایبرگلاس بودند. در ادامه در سال 1955 یک نوع عایق مقاوم در برابر تخلیه جزیی از ترکیب 50 درصد رشته‌های فایبرگلاس و 50 درصد رشته‌های PET بدست آمد که روی هادی پوشانده می‌شد و سپس با حرارت دادن در کوره‌های مخصوص، PET ذوب شده و روی فایبرگلاس را می‌پوشاند. این عایق بسته به نیاز به صورت یک یا چند لایه مورد استفاده قرار می‌گرفت. عایق مذکور با نام عمومی پلی‌گلاس و نام تجاری داگلاس وارد بازار شد.

مهمترین استرسهای وارد بر عایق استرسهای حرارتی است. بنابراین سیستم‌های عایقی همواره در ارتباط تنگاتنگ با سیستم‌های خنک‌سازی بوده‌اند. خنک‌سازی در ژنراتورهای اولیه توسط هوا انجام می‌گرفت. بهترین نتیجه بدست آمده با این روش خنک‌سازی یک ژنراتور MVA200 با سرعت rpm1800 بود که در سال 1932 در منطقه بروکلین نیویورک نصب شد. اما با افزایش ظرفیت

ژنراتورها نیاز به سیستم خنک‌سازی موثرتری احساس شد. ایده خنک‌سازی با هیدروژن اولین بار در سال 1915 توسط ماکس شولر مطرح شد. تلاش او برای ساخت چنین سیستمی از 1928 آغاز و در سال 1936 با ساخت اولین نمونه با سرعت rpm3600 به نتیجه رسید. در سال 1937 جنرال الکتریک اولین توربوژنراتور تجاری خنک شونده با هیدروژن را روانه بازار کرد. این تکنولوژی در اروپا بعد از سال 1945 رایج شد. در دهه‌های 1950 و 1960 روشهای مختلف خنک‌سازی مستقیم مانند خنک‌سازی سیم‌پیچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا که در اواسط دهه 1960 اغلب ژنراتورهای بزرگ با آب خنک می‌شدند. ظهور تکنولوژی خنک‌سازی مستقیم موجب افزایش ظرفیت ژنراتورها به میزان MVA1500 شد.

یکی از تحولات برجسته‌ای که در دهه 1960 به وقوع پیوست تولید اولین ماده ابررسانای تجاری یعنی نیوبیوم- تیتانیوم بود که در دهه‌های بعدی بسیار مورد توجه قرار گرفت.

 

 

تحولات دهه 1970

در این دهه تحول مهمی در فرآیند عایق کاری ژنراتور رخ داد. قبل از سال 1975 اغلب عایقها را توسط رزینهای محلول در ترکیبات آلی فرار اشباع می‌کردند. در این فرآیند، ترکیبات مذکور تبخیر و در جو منتشر می‌شد. با توجه به وضع قوانین زیست محیطی و آغاز نهضت سبز در اوایل دهه 1970، محدودیتهای شدیدی بر میزان انتشار این مواد اعمال شد که حذف آنها را از این فرآیند در پی داشت. در نتیجه استفاده از مواد سازگار با محیط زیست در تولید و تعمیر ماشینهای الکتریکی مورد توجه قرار گرفت. استفاده از رزینهای با پایه آبی یکی از اولین پیشنهاداتی بود که مطرح شد، اما یک راه‌حل جامعتر که امروزه نیز مرسوم است، کاربرد چسبهای جامد بود. در همین راستا تولید نوارهای میکای رزین ریچ بدون حلال نیز توسعه یافت.

از دیگر پیشرفتهای مهم این دهه ظهور ژنراتورهای ابررسانا بود. یک ماشین ابررسانا عموماً‌از یک سیم‌پیچ میدان ابررسانا و یک سیم‌پیچ آرمیچر مسی تشکیل شده است. هسته رتور عموماً آهنی نیست، چرا که آهن به دلیل شدت بالای میدان تولیدی توسط سیم‌پیچی میدان اشباع می‌شود. فقط در یوغ استاتور از آهن مغناطیسی استفاده می‌شود تا به عنوان شیلد و همچنین منتقل کننده شار بین قطبها عمل کند. عدم استفاده از آهن، موجب کاهش راکتانس سنکرون (به حدود pu5/0- 3/0) در این ماشینها شده که طبعاً موجب پایداری دینامیکی بهتر می‌شود. همانطور که اشاره شد، اولین ماده ابررسانای تجاری نیوبیوم- تیتانیوم بود که تا دمای 5 درجه کلوین خاصیت ابررسانایی داشت. البته در دهه‌های بعد پیشرفت این صنعت به معرفی مواد ابررسانایی با دمای عملکرد 110 درجه کلوین انجامید. براین اساس مواد ابررسانا را به دو گروه دما پایین مانند نیوبیوم – تیتانیوم و دما بالا مانند BSCCO-2223 تقسیم می‌کنند. از اوایل دهه 1970 تحقیقات بر روی ژنراتورهای ابررسانا با استفاده از هادیهای دما پایین آغاز شد. در این دهه کمپانی وستینگهاوس تحقیقات برای ساخت یک نمونه دوقطبی را با استفاده هادیهای دماپایین آغاز کرد. نتیجه این پروژه ساخت و تست یک ژنراتور MVA5 در سال 1972 بود.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد سیر تکاملی ژنراتورهای سنکرون

پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترلر

اختصاصی از هایدی پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترلر دانلود با لینک مستقیم و پر سرعت .

پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترلر


پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترلر
پروژه ای از رشته برق و الکترونیک درباره فانکشن ژنراتور کنترل شونده با میکرو کنترلر را برای شما دوستان محترم آماده دانلود کرده ایم. در این پروژه از آی سی های مولد این سه پالس استفاده نشده است و میبایست مدار داخلی این آی سی ها شبیه سازی میشد. بدین منظور از آمپ امپها برای تولید امواج مربعی و مثلثی و از یک مدارشامل مقاومت و دیودها برای تولید موج مثلثی استفاده شده است که کنترل دامنه و فرکانس و نوع موج بوسیله یک میکرو صورت میگیرد. در فصل اول مشخصات و خلاصه ای از مدار و قطعات استفاده شده و  نحوه و مدار مولد پالس مربعی ومثلثی و  پالس سینوسی و محاسبات مدار و نحوه کنترل مدار بوسیله میکرو مورد نظر آورده شده است و در فصل دوم فلوچارت برنامه و برنامه میکرو که به زبان C نوشته شده و نتیجه پروژه تهیه شده  و در آخر پروژه ،DATA SHEET  قطعات استفاده شده آورده شده است. این پروژه در فایل ورد ۳۰ صفحه ای نوشته شده است

فهرست مطالب این پروژه به شرح زیر است :

  • مقدمه
  • چکیده مطالب

فصل اول

  • مشخصات و محدوده مدار
  • خلاصه ای از مدار
  • ایجاد موج مثلثی و مربعی
  • محاسبات مدار
  • موج سینوسی و محاسبه
  • کنترل خروجی

فصل دوم


دانلود با لینک مستقیم


پروژه فانکشن ژنراتور کنترل شونده با میکرو کنترلر

تحقیق در مورد حفاظت ژنراتور

اختصاصی از هایدی تحقیق در مورد حفاظت ژنراتور دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد حفاظت ژنراتور


تحقیق در مورد حفاظت ژنراتور

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه4

 

  1. ظرفیت ژنراتور
  2. سطح ولتاژ و نحوه اتصال ژنراتور به شبکه
  3. وضعیت نقطه نوترال

موارد 1 و 2 در قسمتهای آینده و در بخش طرحهای حفاظتی آورده میشود. اما در مورد شماره 3 روشهای کلی زیر متداول است:

  1. اتصال مستقیم نوترال به زمین
  2. اتصال نقطه نوترال با امپدانس
  3. نقطه نوترال ایزوله

روش اتصال نقطه نوترال با امپدانس برحسب میزان محدود سازی جریان عیب فاز به زمین به دو دسته اتصال نقطه نوترال با امپدانس بالا یا "High impedance earthing " و  اتصال نقطه نوترال با امپدانس کم یا "Low impedance earthing " تقسیم میشوند. در روش "High impedance earthing " جریان عیب فاز به زمین به مقداری در حدود 5 تا 10 آمپر محدود میشود. در حالیکه در روش "Low impedance earthing " این جریان به مقداری در  حدود 100 آمپر محدود خواهدشد.

وضعیت اتصال مستقیم نوترال به زمین در مواجهه با خطا روشن است . اما در این میان روش نقطه نوترال ایزوله نسبت به 2 روش دیگر مزایا و معایبی دارد که کاربردهای خاص خود را داراست که در صورت نیاز در جای خود به بحث پیرامون آن خواهیم پرداخت.

 در طرحهای حفاظتی که ما به بحث پیرامون آن میپردازیم فرض بر آن است که نقطه نوترال با روش شماره 2 زمین شده است.

در نقشه های حفاظتی به منظور نمایش حفاظتهای مختلف از کدهای استاندارد ANSI استفاده میشود. برخی از معروفترین این کدها که ما در معرفی طرحهای حفاظتی از آنها یاد خواهیم نمود عبارتند از:


دانلود با لینک مستقیم


تحقیق در مورد حفاظت ژنراتور