فهرست
مقدمه. 4
عناصر داده کاوی.. 10
پردازش تحلیلی پیوسته: 11
قوانین وابستگی: 12
شبکه های عصبی : 12
الگوریتم ژنتیکی: 12
نرم افزار 13
کاربردهای داده کاوی.. 13
داده کاوی و کاربرد آن در کسب و کار هوشمند بانک.... 15
داده کاوی درمدیریت ارتباط بامشتری.. 16
کاربردهای داده کاوی در کتابخانه ها و محیط های دانشگاهی.. 17
مدیریت موسسات دانشگاهی.. 19
داده کاوی آماری و مدیریت بهینه وب سایت ها 21
داده کاوی در مقابل پایگاه داده Data Mining vs database. 22
ابزارهای تجاری داده کاوی.. 23
منابع اطلاعاتی مورد استفاده 24
انبار داده 24
مسائل کسب و کار برای دادهکاوی.. 26
چرخه تعالی داده کاوی چیست؟ 27
متدلوژی دادهکاوی و بهترین تمرینهای آن.. 31
یادگیری چیزهایی که درست نیستند. 32
الگوهایی که ممکن است هیچ قانون اصولی را ارائه نکنند. 33
چیدمان مدل ممکن است بازتاب دهنده جمعیت وابسته نباشد. 34
ممکن است داده در سطح اشتباهی از جزئیات باشد. 35
یادگیری چیزهایی که درست ولی بلااستفادهاند. 37
مدلها، پروفایلسازی، و پیشبینی.. 38
پیش بینی.. 41
متدلوژی.. 42
مرحله 1: تبدیل مسئله کسب و کار به مسئله دادهکاوی.. 43
مرحله 2: انتخاب داده مناسب... 45
مرحله سوم: پیش به سوی شناخت داده 48
مرحله چهارم: ساختن یک مجموعه مدل.. 49
مرحله پنجم: تثبیت مسئله با دادهها 52
مرحله ششم: تبدیل داده برای آوردن اطلاعات به سطح.. 54
مرحله هفتم: ساختن مدلها 56
مرحله هشتم: ارزیابی مدل ها 57
مرحله نهم: استقرار مدل ها 61
مرحله 10: ارزیابی نتایج.. 61
مرحله یازدهم: شروع دوباره 61
وظایف دادهکاوی 62
1- دستهبندی.. 62
2- خوشهبندی.. 62
3- تخمین.. 63
4- وابستگی.. 65
5- رگرسیون.. 66
6- پیشگویی.. 67
7- تحلیل توالی.. 67
8- تحلیل انحراف... 68
9- نمایهسازی.. 69
منابع.. 70
دانلود پایان نامه کارشناسی رشته کامپیوتر - داده کاوی، تکنیکها و متدلوژی آن با فرمت ورد