هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

آموزش باز کردن قفل رمز و پترن موبایل اندروید

اختصاصی از هایدی آموزش باز کردن قفل رمز و پترن موبایل اندروید دانلود با لینک مستقیم و پر سرعت .

آموزش باز کردن قفل رمز و پترن موبایل اندروید


آموزش باز کردن قفل رمز و پترن موبایل اندروید

آموزش باز کردن قفل رمز و پترن موبایل اندروید

امروز می خواهیم روشی بدون هزینه برای باز کردن کد فراموش شده ای که روی گوشی اندرویدی خودتان وارد کرده اید را آموزش بدهیم.

 

 

 

فراموشی قفل الگوی صفحه ( باز کردن قفل گوشی های اندروید)

امروزه تمام دنیای ما انباشته شده از انبوه رمزها و کلمات عبور، مانند کلمه عبور عابر بانک، کلمه عبور ایمیل و کلمه عبور سیستم های رایانه ای و … البته این کلمات و رمز ها ضرویست و امنیت ما را تا اندازه ای تامین می کند اما در مواقعی ممکن است که افرادی رمز عبور خود را فراموش کنند، دراین صورت چه کار باید کرد آیا باید قید همه چیز را زد یا هنوز امیدی هست که به اطلاعات دسترسی داشته باشیم؟

اگر الگو قفل گوشی اندرویدی خودرا فراموش کرده اید دیگر نگران اطلاعات خود نباشید چون به روشی آسان می توان آن را باز کرد.

 


دانلود با لینک مستقیم


آموزش باز کردن قفل رمز و پترن موبایل اندروید

کالیبراسیون پارامترهای روش المان گسسته و شبیه سازی عملیات پر کردن باکت معدن (مقاله 12 به زبان انگلیسی)

اختصاصی از هایدی کالیبراسیون پارامترهای روش المان گسسته و شبیه سازی عملیات پر کردن باکت معدن (مقاله 12 به زبان انگلیسی) دانلود با لینک مستقیم و پر سرعت .

کالیبراسیون پارامترهای روش المان گسسته و شبیه سازی عملیات پر کردن باکت معدن (مقاله 12 به زبان انگلیسی)


کالیبراسیون پارامترهای روش المان گسسته و شبیه سازی عملیات پر کردن باکت معدن (مقاله 12 به زبان انگلیسی)

The Discrete Element Method (DEM) is useful for modelling granular flow. The accuracy of DEM modelling is dependent upon the
model parameter values used. Determining these values remains one of the main challenges. In this study a method for determining the
parameters of cohesionless granular material is presented. The particle size and density were directly measured and modelled. The particle
shapes were modelled using two to four spheres clumped together. The remaining unknown parameter values were determined using
confined compression tests and angle of repose tests. This was done by conducting laboratory experiments followed by equivalent numerical
experiments and iteratively changing the parameters until the laboratory results were replicated. The modelling results of the confined
compression tests were mainly influenced by the particle stiffness. The modelling results of the angle of repose tests were dependent
on both the particle stiffness and the particle friction coefficient. From these observations, the confined compression test could be used to
determine the particle stiffness and with the stiffness known, the angle of repose test could be used to determine the particle friction coefficient.
Usually DEM codes do not solve the equations of motion for so-called walls (non-granular structural elements). However, in this
study a dynamic model of a dragline bucket is developed and implemented in a commercial DEM code which allows the dynamics of the
walls to be modelled. The DEM modelling of large systems of particles is still a challenge and procedures to simplify and speed up the
modelling of dragline bucket filling are presented. Using the calibrated parameters, numerical results of bucket filling are compared to
experimental results. The model accurately predicted the orientation of the bucket. The model also accurately predicted the drag force
over the first third of the drag, but predicted drag forces too high for the subsequent part of the drag.


دانلود با لینک مستقیم


کالیبراسیون پارامترهای روش المان گسسته و شبیه سازی عملیات پر کردن باکت معدن (مقاله 12 به زبان انگلیسی)

جذاب کردن قسمت آشنایی با خودرو کتاب حرفه و فن سال سوم راهنمایی باوسایل کمک آموزشی برای دانش آموزان

اختصاصی از هایدی جذاب کردن قسمت آشنایی با خودرو کتاب حرفه و فن سال سوم راهنمایی باوسایل کمک آموزشی برای دانش آموزان دانلود با لینک مستقیم و پر سرعت .

جذاب کردن قسمت آشنایی با خودرو کتاب حرفه و فن سال سوم راهنمایی باوسایل کمک آموزشی برای دانش آموزان


جذاب کردن قسمت آشنایی با خودرو                     کتاب حرفه و فن سال سوم راهنمایی باوسایل        کمک آموزشی  برای دانش آموزان

 

 

 

 

نوع فایل:ورد قابل ویرایش

تعداد صفحه:51

قیمت:2500 تومان

 

 

تقدیم به همه معلمان این مرز بوم و همه کسانی که برای پیشرفت این آب و خاک در تلاش و کوشش هستند.

 

 

 

 

 


با سپاس فراوان از همه عزیزانی که در اتمام این پژوهش با من همکاری صمیمانه داشتند .

 

 

 


فهرست مطالب
چکیده ........... ...1
مقدمه 2
توصیف وضعبت موجود 6
بیان مسائل 8
شواهد 1 9
پیشینه تحقیق 37
تحلیل و تفسیر داده ها 38
ارائه راه حل موقت 39
اجرای راه حل 40
شواهد(2) ابزارهای اطلاعاتی 41
ارزیابی تأثیر اقدامات وتعیین اعتبار 42
راهکارها وپیشنهادات 45
منابع و مآخذ 48

چکیده
باتوجه به اهمیّت وضرورتی که شناخت خودرو در زندگی دارد به عنوان دبیر حرفه وفن کسی که باید در دانش آموزان این انگیزه رابوجود آورد که آنها توانائی هائی دارند که باید ره گشای زندگی آینده آنان باشد، برخودم لازم دیدم که به دنبال راههای جذابیّت ،درک بیشتر این بخش وبخشهای شبیه آن درکلاس وفوائد آن در زندگی باشم.
کلمات کلیدی : حرفه و فن – خودرو- جذابیت

 

 

 

مقدمه:
آنچه یک دیدن کند ادراک آن سالها نتوان نمودن بابیان
وسایل کمک آموزشی از حیث این که تئوری و عمل را هماهنگ می کند جایگاه ویژه ای دارد.استفاده از وسایل کمک آموزشی توسط معلم در جریان تدریس،باعث می شود که مطالب مطرح شده در ساخت شناختی دانش آموزان جا بگیردو دانش آموز به یادگیری معنی دار نائل شود.متاسفانه استفاده منظم و اصولی از وسایل کمک آموزشی تحت هر عنوان در مدرسه به بوته فراموشی سپرده می شود و اغلب عدم استفاده از وسایل کمک آموزشی را از طریق کمبود وقت و نبود وسایل توجیه می کنند.استفاده از وسایل کمک آموزشی باعث تحرک و پویایی در نظام آموزشی می شود. (قهرمانی ،جعفر (1383) : تأثیر وسایل کمک آموزشی در تدریس ویادگیری , ماهنامه پیوند , شماره 295-294انتشارات انجمن اولیاء ومربیان)
تحقیقاتی که تا به حال به عمل آمده است نشان می دهد که از طریق تدریس معمولی تنها30 %مطالب از مطالب مورد تدریس یاد گرفته می شود در حالی که اگر یادگیری با استفاده صحیح از وسایل ارتباطی به عمل آید میزان یادگیری افراد را تا 75 % بالا می برد .


دانلود با لینک مستقیم


جذاب کردن قسمت آشنایی با خودرو کتاب حرفه و فن سال سوم راهنمایی باوسایل کمک آموزشی برای دانش آموزان

پروپوزال تاثیر روش های مختلف خشک کردن آفتابی، هوای داغ و مایکروویو بر پارامترهای کمی و کیفی آلو

اختصاصی از هایدی پروپوزال تاثیر روش های مختلف خشک کردن آفتابی، هوای داغ و مایکروویو بر پارامترهای کمی و کیفی آلو دانلود با لینک مستقیم و پر سرعت .

پروپوزال تاثیر روش های مختلف خشک کردن آفتابی، هوای داغ و مایکروویو بر پارامترهای کمی و کیفی آلو


پروپوزال تاثیر روش های مختلف خشک کردن آفتابی، هوای داغ و مایکروویو بر پارامترهای کمی و کیفی آلو

پروپوزال تاثیر روش های مختلف خشک کردن آفتابی، هوای داغ و مایکروویو بر پارامترهای کمی و کیفی آلو/

در زیر به تعداد صفحات، فرمت فایل و فهرست مطالب آنچه شما در این فایل دریافت می کنید اشاره شده است:

تعداد صفحات: 18

فرمت فایل: word

فهرست مطالب:
بیان مسأله (تشریح ابعاد ، حدود مسأله ، معرفی دقیق مسأله ، بیان جنبه‌های مجهول و مبهم و متغیرهای مربوط به پرسشهای تحقیق ، منظور تحقیق) 
سوابق مربوط (بیان مختصر سابقه تحقیقات انجام شده درباره موضوع و نتایج به دست آمده در داخل و خارج از کشور و نظرات علمی موجود درباره موضوع تحقیق)
سوالات تحقیق

متغیرهای پژوهش
تعاریف عملیاتی
متغیرها
فرضیه ها تحقیق
اهداف تحقیق 
جنبه نوآوری تحقیق
روش کار 
روش گردآوری اطلاعات 
ابزار گردآوری اطلاعات 
روش تجزیه و تحلیل اطلاعات 
حجم نمونه و روش نمونه گیری 
قلمرو مکانی و زمانی تحقیق 
جامعه آماری
جدول زمانبندی مراحل انجام تحقیق از زمان تصویب تا دفاع 
فهرست منابع و ماخذ (فارسی و انگلیسی)


دانلود با لینک مستقیم


پروپوزال تاثیر روش های مختلف خشک کردن آفتابی، هوای داغ و مایکروویو بر پارامترهای کمی و کیفی آلو

دانلود مقاله مقاله ترجمه شده سیستم پارک کردن اتوماتیک خودرو-اموزشی

اختصاصی از هایدی دانلود مقاله مقاله ترجمه شده سیستم پارک کردن اتوماتیک خودرو-اموزشی دانلود با لینک مستقیم و پر سرعت .

 

 

 

آر. جِی. اوئنتاریو و ام. پاسکیر

 

چکیده
این مقاله قسمتی از یک مطالعه انجام شده در مرکز هوش محاسباتی در NTU را معرفی میکند که برای ایجاد تکنولوژی های جدید برای مسیریابی، هدایت، و کنترل ماشین های هوشمند انجام شده است. یکی از اهداف آن دادن توانایی حرکت اتوماتیک به ماشین ها در انواع مختلف جاده ها و شناسایی مانورهایی مانند پارک معکوس و موازی، گردش های سه فرمانه، و غیره است. یک روش برای انجام اینکار اینست که یک سیستم خود-آموزشی طراحی کنیم که از مهارت انسان ها برای حرکت اتوماتیک یک سیستم کنترل ماشین است. یک ساختار عصبی-فازی جدید با نام شبکه عصبی فازی GenSoYager ایجاد و با شبیه ساز حرکت ماشین برای اهداف آموزش و آزمایش ترکیب شده است. GenSoYagerFNN تاکنون اثبات کرده است که از شبکه های آموزشی دیگر در شناسایی محل پارک و انجام مانورهای پارک معکوس، بهتر است. راهکار توصیف شده نیز با استفاده از یک ماشین مدل کنترل شونده با ریز پردازنده اعتباریابی شده است.
1- مقدمه
رشد چشمگیر در تکنولوژی حرکت اتوماتیک در جامعه موتوری کردن امروزی در قرن گذشته به اوج خود رسیده است، که امنیت آن بیشتر از یک مسئله الزامی است. چون خطاهای انسانی علت اصلی در اغلب تصادفات ترافیک است، بنابراین ایجاد تکنولوژی های in-car برای نمایش، اجتناب و راهنمایی به حیطه تحقیقاتی اصلی تبدیل شده است، و هدف آن کاهش مسئولیت راننده انسانی، افزایش ظرفیت ترافیک، و فراهم سازی عملیات ماشینی ایمن است. گروه ما در مرکز هوش محاسباتی در NTU مدتهای طولانی بر روی این موضوع، و خصوصاً درک سیستم های حرکت خودکار برای ماشین های جاده ای مطالعه کرده است.
این مقاله جدیدترین سیستم ما با نام شبکه عصبی فازی Yager خود-سازماندهی کلی (GenSoYagerFNN) و کاربرد آن در حرکت اتوماتیک یک ماشین بر روی جاده و شناسایی مانورهایی مانند پارک معکوس و گردش سه فرمانه را توصیف میکند. راهکار ما از طراحی یک سیستم خود-آموزشی تشکیل شده است که میتواند از مهارت انسانی برای استخراج اتوماتیک قوانین عینی برای کنترل ماشین استفاده کند. فرضیه ما به این صورت است که رانندگی یک فرآیند تصمیم گیری مداوم است که می توان آنرا به یک سری قوانین مربوط به ورودی حسی برای کنترل خروجی تجزیه کرد. یک سیستم کنترل فازی برای مدلسازی ابهام ذاتی اطلاعات موجود (سرعت، فاصله، متغیرهای محیط دینامیک) انتخاب می گردد. سپس این سیستم فازی قانون-مبنا در بالای یک ساختار شبکه عصبی قرار داده می شود، که توانایی یادگیری، یادآوری، استنباط و سازگاری با داده های آموزشی را فراهم می سازد. شبکه عصبی فازی برآیند، یا سیستم عصبی-فازی، دارای قابلیت هر دو تکنیک (یعنی جنبه یادگیری و قابلیت های بهینه سازی و همچنین ساختار پیوندگرا، توانایی استدلال انسانی و راحتی ترکیب دانش فنی) است. در همان زمان، اشکالات و نقایص هر راهکار کاهش داده می شود: مسئله طراحی برای سیستم فازی قانون-مبنا (انتخاب عملکردهای عضویت، شناسایی قوانین فازی) و ماهیت جعبه سیاه شبکه (ظرفیت لایه های میانی).
استنباط در GenSoYagerFNN پس از طرح استدلال Yager مدلسازی می گردد، که تفاوت های ورودی ها را با گزینه های قبلی قوانین برای استنباط درجه تفاوت با قانون گزینه بعدی محاسبه میکند، و بنابراین به خروجی می رسد. مزیت اصلی آن نسبت به قانون محاسباتی استنباط (CRI) قدیمی اینست که وقتی که ورودی دقیقاً با گزینه قبلی مطابقت دارد، خروجی برآیند نیز با گزینه بعدی کاملاً مطابقت خواهد داشت. از لحاظ شهودی، قانون استنباط Yager به استدلال انسانی نزدیک تر است، و بصورت مهمتر از تکنیک های موجود پدیدار می گردد. در واقع تاکنون اثبات شده است که GenSoYagerFNN از شبکه های آموزشی دیگر در شناسایی محل های پارک و اجرای مانورهای پارک معکوس، بهتر است. و در آخر اینکه، باید بگوییم که با اینکه مطالعه گزارش شده بصورت شبیه سازی انجام شده است، اما این راهکار بتازگی با استفاده از یک ماشین مدل کنترل شونده توسط ریز پردازنده نیز تأیید شده است.
2- شبکه عصبی فازی GenSoYager
GenSoYagerFNNپیشنهاد بر مبنای ساختار پیوندگرای داخلی دیگری با نام شبکه عصبی فازی خود-سازماندهی کلی (GenSoFNN) است و قادر است که بصورت اتوماتیک قوانین فازی را از روی داده های آموزشی عددی موجود ایجاد کند و یک سری قوانین سازگار را توسط اطمینان از این مسئله حفظ کند که هر برچسب فازی در ابعاد ورودی/خروجی بصورت مختص فقط توسط یک دسته (سری فازی) نشان داده می شود. هر سری فازی ورودی می تواند به گزینه های قبلی بیش از یک قانون فازی کمک کند. GenSoYagerFNN قابلیت مقاومت نویز قوی توسط استفاده از یک تکنیک دسته بندی جدید با نام دسته بندی افزایشی مجزاذ (DIC) دارد. در این چارچوب، داده های نویزی/ساختگی که دارای رابطه ضعیفی با داده های معتبر یا واقعی دارند، دسته های مجزایی برای آنها ایجاد می گردد. همچنین، DIC نیازمند هیچ دانش قبلی در مورد تعداد دسته های دامنه مسئله نیست. این ویژگی ها همان دلیلی هستند که GenSoYagerFNN نسبت به راهکار های دیگر استنباط Yager انتخاب شد.
دوره آموزشی GenSoYagerFNN شامل سه مرحله است: خود-سازماندهی، طرح ریزی قوانین، و یادگیری پارامترها، که همه آنها در یک سری منفرد از داده های آموزشی رخ میدهند و امکان استفاده آنلاین از سیستم را فراهم می سازد. یادگیری انتشار-عقبی معروف بر مبنای نزول شیب منفی در مرحله آخر برای تنظیم پارامترهای شبکه مورد استفاده قرار می گیرد. GenSoYagerFNN از پنج لایه گره تشکیل شده است (شکل 1)، که هر کدام از آنها دارای روابط "گنجایش ورودی" متناهی و "گنجایش خروجی" متناهی است. تعداد گره ها در هر لایه توسط nI نشان داده می شود، که . هر یک از گره های ورودی در لایه دارای یک ورودی منفرد است. تعداد خصوصیات ورودی سری داده های استفاده شده برای آموزش شبکه، تعداد گره های ورودی n1 را تعیین می کند، که بصورت بردار نشان داده میشود. همچنین، هر یک از گره های خروجی (که ) خروجی منفرد را محاسبه میکند، و همه خروجی ها با توجه به X بصورت بردار نشان داده می شوند.
GenSoYagerFNN از طرح آموزشی نظارتی برای فرمولبندی اتوماتیک قوانین فازی از داده های آموزشی و برای تنظیم پارامترهای سیستم استفاده میکند. بردار نشاندهنده خروجی های مطلوب شبکه است. قبل از آموزش، GenSoYagerFNNفقط دارای گره لایه 1 و لایه 5 است. لایه های منفی که شامل گره های گزینه ورودی هستند (لایه 2)، گره های قانون (لایه 3) و گره های گزینه خروجی (لایه 4) بصورت پیشرفت های آموزشی ایجاد و تنظیم می گردند. اثرات قابل آموزش شبکه (ضمیمه شده در بلوک های مستطیلی شکل 1) را می توان در لایه های 2 و 5 پیدا کرد، که بترتیب سری فازی ورودی و خروجی را توصیف میکنند. اثرات روابط شبکه باقیمانده با هم متحد هستند. گره های ورودی در لایه 1 ممکن است دارای تعداد گزینه های ورودی متفاوتی باشد. برای گره ورودی ، تعداد گره های گزینه ورودی بصورت شنان داده می شود و تعداد کلی گره های لایه 2 بصورت است. هر گره در لایه 3 یک گره قانون است، و بنابراین و n3 تعداد کلی قوانین فازی در GenSoFNN است. هر گره خروجی در لایه 5 میتواند دارای تعداد گزینه های خروجی متفاوتی باشد، و بنابراین تعداد کلی گره های لایه 4 بصورت نشان داده میشود.

 


شکل 1 – ساختار GenSoYagerFNN

 

3- طرح استدلال Yager
استنباط فازی قانون قیاس استثنائی متعارف را توسعه میدهد، که بیان میکند که قضیه Y بصورت B است را می توان از قضیه های زیر استنباط کرد:

قضیه مربوط به متغیر فازی مشترک است و در فضای فرآورده متقاطع توسط توزیع احتمال مانند معادله 1 توصیف می گردد:

دو تعبیر ممکن بر مبنای مدلهای رابط و مفهوم-مبنا برای رابطه فازی R وجود دارد. طرح قانون ترکیبی استنباط (CRI) از راهکار اول استفاده می کند، درحالیکه قانون Yager استنباط از راهکار دیگر استفاده میکند. در نتیجه، تابع عضویت برای R با استفاده معادله 2 یا معادله 3 محاسبه می گردد، که با انتقال منطقی مطابقت دارد که به دو شیوه مختلف تعبیر می گردد. قانون-T و کونورم-T بترتیب نشاندهنده تعاریف کلی عملگرهای سری فازی رابط و انفصالی هستند، که معمول ترین آنها عملگرهای min و max هستند.

می توان مشاهده کرد که معادله 3 با بیانیه مطابقت دارد که در منطق جدید با برابر است. مدل مفهوم-مبنا از رابطه فازی (یعنی راهکار دوم) دقیقاً مفهوم مرکزی است که اساس طرحاستدلال Yager بکار گرفته شده توسط GenSoYagerFNN پیشنهادی است.
4- عملیات GenSoYagerFNN
GenSoYagerFNN پیشنهادی از 5 لایه نورون تشکیل شده است، که عملیات آنها در بخش های بعدی توضیح داده می شود.
لایه فازی سازی - این لایه از گره های ورودی تشکیل شده است که بصورت فازی ساز های منفرد عمل میکنند که فازی سازی ورودی های دارای مقدار مطلق را انجام میدهد که برای شبکه معرفی شده است. موتور استنباط Yager برای استفاده از ورودی های فازی شده و محاسبه خروجی های فازی شده مناسب، به فازی سازی نیاز دارد.
لایه گزینه قبلی - ورودی های فازی شده از لایه 1 با برچسب های ورودی مطابق مقایسه می گردند که گزینه های قبلی قوانین فازی را در GenSoYagerFNN تشکیل میدهند. اشتقاق پیش نیاز در لایه 2 سنجش عدم تناجس را محاسبه میکند، که ضرورتاً حالت منفی مقادیر عضویت ورودی ها با توجه به سری های فازی ورودی است.
لایه قانون - گره های لایه 3 قوانین فازی را در GenSoYagerFNN مدلسازی میکند. هر گره درجه موفقیت ورودی های جاری (یعنی شباهت کلی) را با توجه به گزینه های قبلی قانون فازی محاسبه میکند که آنرا نشان میدهد.
لایه گزینه بعدی - لایه 4 از گره های گزینه خروجی تشکیل شده است که نشاندهنده سری فازی های خروجی بعدی قوانین در لایه 3 است. هر گره گزینه خروجی را می توان با قوانین فازی چندگانه مرتبط ساخت که نشاندهنده اینست که آنها ممکن است دارای گزینه های بعدی یکسانی باشند. همانطور که گفته شد، GenSoYagerFNN از مدل مفهوم-مبنا استفاده میکند و بنابراین نتیجه گیری های قوانین موازی بصورت مرتبط در این لایه با هم ترکیب می گردند.
لایه غیر فازی سازی - لایه 5 شامل گره های خروجی است که مسئول غیر فازی سازی نتیجه گیری های فازی اشتقاقی است و آنها را بصورت خروجی های جدید معرفی میکند. تجمع با استفاده از مرکز میانگین گیری (COA) اصلاح شده برای تولید خروجی نهایی اعمال می گردد.
5- سیستم پارک اتوماتیک
یک شبیه ساز رانندگی سه بعدی (شکل 2) ساخته شد تا داده های رانندگی را از رانندگان انسانی جمع آوری کند. این داده ها ابتدا برای آموزش کنترل گر ماشین و سپس برای اندازه گیری قابلیت رانندگی آن استفاده می گردد. اطلاعات فیدبک شامل داده های حسی مانند فاصله از موانع و موقعیت ماشین با توجه به پروفایل مسیر/جاده جاری و سیگنال های کنترل متشکل از شتاب، ترمز و نسبت چرخ دنده ها است.

 


شکل 2 – شبیه ساز رانندگی اتوماتیک ماشین

 

از GenSoYagerFNN برای مدلسازی و کپی برداری مهارت رانندگی انسان برای انجام مانورهای پارک معکوس استفاده شد. میتوان گفت که سری قوانین فازی ایجاد شده توسط GenSoYagerFNN تقریباً با دانش ما در مورد فرآیند رانندگی ماشین برابر است. در نتیجه، کارایی آن با استفاده از شبیه ساز ماشین و همچنین ماشین مدل کنترل شونده توسط ریز پردازنده مورد بررسی قرار گرفت.
پارک معکوس یک مانور معمول است که بسرعت و همراه با افزایش ترافیک شهری و فضای پاک محدود، متداول شده است. در راهکار ما، فرآیند پارک کردن در سه مرحله مجزا انجام می شود. ابتدا ماشین کنترل شونده توسط GenSoYagerFNN مسیر را دنبال میکند تا اینکه یک محل پارک خالی با اندازه مناسب پیدا میکند. سپس ماشین به جلو حرکت میکند و فاصله مناسبی را با توجه به دیوار تنظیم میکند. اینکار برای داشتن یک موقعیت مناسب برای انجام پارک معکوس است. در آخر، ماشین مانور پارک معکوس را بصورت درست انجام میدهد. این مرحله از هر سه شبکه آموزشی مستقل برای هدایت فرمان، ترمز، و شتاب استفاده میکند. ممکن است تنظیماتی برای حرکت مکرر ماشین به سمت عقب و جلو لازم باشد تا اینکه موقعیت پارک مناسب ایجاد می گردد. مثال نوعی از یک مانور موفقیت آمیز در شکل 3 نشان داده شده است.

 


شکل 3 – پارک معکوس با استفاده از GenSoYagerFNN

 




شکل 4 –قدرت تحریک قانون کنترل گرهای ماشین
مطالعه قدرت تحریک قانون برای تحلیل توانایی شبکه برای حفظ سازگاری مبنای قانون انجام شد. خصوصاً نسبت قوانین استفاده شده با تعداد کلی قوانین در شبکه مقایسه شد. به حداقل رساندن تعداد قوانین در شبکه برای اطمینان از کارایی خوب ضروری است، و در هنگام استفاده از بعنوان مثال، یک سیستم کنترل ترکیبی با توان ذخیره سازی محدود، ضروری می گردد. یک مبنای قانون سازگار توسط گسترش وسیع قوانین تحریک شده نسبت به تعداد کلی قوانین برای همه موقعیت های پارک موجود، به بهترین شکل نشان داده میشود. نتایج آزمایشی برای قدرت تحریک قانون در سراسر فرآیند پارک معکوس در شکل 4 بصورت خلاصه بیان شده است.
برای شبکه هدایت فرمان، 45 قانون در حین فرآیند آموزش ایجاد شد. دو قانون مهم (قوانین 27 و 28) و چهار قانون کمکی با قدرت تحریک کمتر شناسایی شده است. برای شبکه شتاب (TPS)، 112 قانون در حین آموزش ایجاد شد. چهار قانون (قوانین 36، 65، 66 و 112) و سپس سه قانون کمکی (قوانین 57، 65، 71 و 107) وجود دارد که از بقیه مهمتر هستند. تغییر مهمی در توزیع قدرت تحریک قانون در هدایت فرمان و سیستم های TPS مشاهده شد، که بر پیچیدگی بالای هر دو سیستم تأکید دارد. این نتایج پیش بینی می گردند چون در یک پارک معکوس ماهرانه، ماشین باید سرعت و هدایت فرمان خود را مکررا در گردش های زیاد کنترل کند تا از برخورد با موانع اطراف خود خودداری کند.
سیستم ترمز تغییر کوچک تری را در مقایسه با TPS یا سیستم هدایت فرمان نشان میدهد. فقط دو قانون ضروری شناسایی شده است (قوانین 4 و 46). این مسئله عمدتاً بخاطر خصوصیات ترمز در سیستم پارک کردن است. معمولاً ترمز برای مدت زمان نسبتاً کوتاهی اعمال می گردد و در بقیه زمان ها بصورت غیرفعال باقی می ماند. نتیجه گیری های مشابهی برای سیستم شناسایی محل پارک اعمال می گردد، که فقط 3 قانون (قوانین 4، 5 و 6) از 13 قانون وجود دارد که اغلب تحریک میگردند. همچنین، 3 قانون (قوانین 1، 2 و 3) حذف می گردند که نشاندهنده قوانین کم اهمیت یا ضعیفی هستند که ممکن است به بروز خطا در هنگام اجرا کمک کنند.
ساختار مبنای قانون نهایی ایجاد شده توسط فرآیند آموزش در شکل 5 بصورت خلاصه بیان شده است. ردیف سوم تعداد برچسب های ورودی (= دسته ها) را در هر بعد ورودی (ویژگی) بدست آمده از آموزش نشان میدهد.

 


شکل 5 – ساختار GenSoYagerFNN برای نمونه مانور پارک معکوس

 

در اینجا برای توضیح دریافت شهودی و راحتی تعبیر قوانین فازی ایجاد شده توسط GenSoYagerFNN، تحلیل مبنای قانون سیستم شناسایی پارک کردن معرفی می گردد. 13 قانون ایجاد شده در سیستم شناسایی وجود دارد، که با 13 برچسب ورودی و 3 برچسب خروجی مرتبط هستند. در این سیستم، ورودی های GenSoYagerFNN شامل 3 ویژگی هستند: فاصله چپ-جلو (حسگر طرف چپ-جلو)، فاصله چپ-وسط (حسگر طرف چپ-وسط)، و فاصله چپ-عقب (حسگر طرف چپ-عقب). فاصله چپ-جلو دارای 5 سری فازی است، درحالیکه فاصله چپ-وسط و فاصله چپ-عقب بترتیب دارای 5 و 3 سری فازی هستند. سری گزینه های فازی استخراج شده از سیستم شناسایی پارک بشرح زیر است:
ورودی "فاصله چپ-جلو" =
{خیلی کوتاه، کوتاه، متوسط، بلند، خیلی بلند}
ورودی "فاصله چپ-وسط" =
{خیلی کوتاه، کوتاه، متوسط، بلند، خیلی بلند}
ورودی "فاصله چپ-عقب" =
{خیلی کوتاه، کوتاه، متوسط، بلند، خیلی بلند}
خروجی "شناسایی" =
{خاموش، نیمه فعال، روشن}

 

همانطور که از روی شکل 4 میتوان دید، قوانین فازی که برای سیستم شناسایی پارک بیشتر تحریک می شوند، قوانین 4، 5 و 6 هستند. با در نظر گرفتن قانون 4، قانون فازی مطابق استخراج شده از مبنای قانون سیستم شناسایی را میتوان بصورت زیر تنظیم کرد:
اگر فاصله چپ-جلو متوسط باشد و
فاصله چپ-وسط متوسط باشد و
فاصله چپ-عقب متوسط باشد
پس شناسایی روشن خواهد بود

 

نتیجه گیری بالا نشان میدهد که محل پارک مناسب شناسایی می گردد و بنابراین ماشین متوقف می گردد و تنظیم پارک کردن انجام می شود. قوانین فازی استخراج شده برای فرآیند شناخت انسانی شهودی هستند، و همانطور که توسط نتایج اثبات می گردد، قانون 4 (که بیشتر از بقیه تحریک می گردد) با دانش انسانی شناسایی محل پارک در فرآیند پارک معکوس مطابقت دارد.

 


شکل 6 – مؤلفه های کیفیت مانور

 

عملکرد GenSoYagerFNN در مانور پارک معکوس نیز از دیدگاه کیفیت پارک کردن بررسی شد، همانطور که توسط موقعیت نهایی ماشین در محل پارک تعیین شده است. منطقه محل پارک طوری طراحی می گردد که یک ماشین پارک شده بصورت ایده آل هم از لحاظ عرض و هم از لحاظ عرض منطقه در مرکز قرار می گیرد. 8 فاصله در نظر گرفته شده (f1, f2, l1, l2, r1, r2, b1 و b2) در شکل 6 نشان داده شده اند، که L طول و W عرض منطقه پارک است. کیفیت کامل زمانی بدست می آید که ماشین در مرکز قرار گرفته باشد و بنابراین زمانی می باشد که مقادیر پارامتر طوری هستند که و . مقادیر بهینه برای طول ماشین و عرض آن در معادله 4 بیان شده است.

وقتی که ماشین در منطقه پارک قرار دارد، حداقل سه مقدار فاصله برای شناسایی صحیح موقعیت و جهت گیری آن مورد نیاز است (بعنوان مثال، دو مقدار فاصله از یک طرف یکسان برای شناسایی جهت گیری آن به علاوه افست از آن طرف. با یک مقدار فاصله دیگر از طرف دیگر همسایه با طرف قبلی، اطلاعات دقیق موقعیت را میتوان بدست آورد. در این آزمایش، فقط از سه حسگر l2، b1 و b2 استفاده شده است و کیفیت پارک را میتوان به شکل انحراف استاندارد (بعنوان مثال در معادله 5) بیان کرد.

در این آزمایش، منطقه پارکی با طول 40 و عرض 25 در کنار جاده ای با عرض 37 قرار داده شد (شکل 7). ابعاد ماشین است.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   27 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله مقاله ترجمه شده سیستم پارک کردن اتوماتیک خودرو-اموزشی