هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فصل پنجم درس ارتباطات سازمانی تفسیر و استنتاج نتایج پژوهش

اختصاصی از هایدی فصل پنجم درس ارتباطات سازمانی تفسیر و استنتاج نتایج پژوهش دانلود با لینک مستقیم و پر سرعت .

فصل پنجم : تفسیر و استنتاج نتایج پژوهش

14صفحه

تجزیه و تحلیل نتایج پژوهش

سوال اصلی پژوهش: آیا بین منابع قدرت مدیران و اثربخشی ارتباطات سازمانی رابطه وجود دارد؟

در راستای سوال اصلی سوالات فرعی زیر مطرح و آزمون شده است:

1- آیا بین منبع قدرت پاداش و اثربخشی ارتباطات سازمانی رابطه وجوددارد؟

2- آیا بین منبع قدرت تخصص و اثربخشی ارتباطات سازمانی رابطه وجوددارد؟

3- آیا بین منبع قدرت مرجعیت و اثربخشی ارتباطات سازمانی رابطه وجوددارد؟

4- آیا بین منبع قدرت قانون و اثربخشی ارتباطات سازمانی رابطه وجوددارد؟

5- آیا بین منبع قدرت اجبار و اثربخشی ارتباطات سازمانی رابطه وجوددارد؟

بررسی مقدار ضرایب همبستگی بین هر یک از منابع مختلف قدرت مدیران و اثربخشی ارتباطات سازمانی و سطح معناداری F ، ارتباط معنی‌دار بین هر یک از منابع قدرت با اثربخشی ارتباطات سازمانی را نشان می‌دهد و در واقع سوالات فرعی 5-1 تایید و به تبع آن سوال اصلی پژوهش نیز تایید می‌شود.

به عبارت دیگر:

بین منابع قدرت مدیران و اثربخشی ارتباطات سازمانی ارتباط معنی‌داری وجود دارد.

از آنجا که سوالات فرعی 5-1 اجزاء سوال اصلی پژوهش بوده و از آن نشأت می‌گیرند، در واقع بررسی این سوالات به معنای بررسی سوال اصلی پژوهش می‌باشد. اکنون به بررسی و تجزیه و تحلیل سوالات فرعی 5-1 می‌پردازیم.

سوال فرعی یک :‌آیا بین منبع قدرت پاداش و اثربخشی ارتباطات سازمانی رابطه وجود دارد؟

بررسی مقدار ضریب همبستگی بین منبع قدرت پاداش و اثربخشی ارتباطات سازمانی (426/0= r) و سطح معناداری،‌ ارتباط معنی‌دار و مستقیم بین منبع قدرت پاداش و اثربخشی ارتباطات سازمانی را تایید می‌کند.

علی‌رغم بررسیهای متعدد، پژوهشی مطابق نتیجه پژوهشی فوق یافت نشد. اما پژوهشهایی انجام شده که بیانگر ارتباط معنی‌دار بین منبع قدرت پاداش با سایر عوامل و فاکتورهای سازمانی می‌باشد.

ارتباط بین پذیرش منابع قدرت توسط مرئوسین و نگرشهای سازمانی عنوان تحقیقی است که توسط «کاسلوکی»، «شواردزوالد» و «آشوری» (2001) انجام شده است.


دانلود با لینک مستقیم


فصل پنجم درس ارتباطات سازمانی تفسیر و استنتاج نتایج پژوهش

تحقیق درباره تخمین مدل و استنتاج آماری

اختصاصی از هایدی تحقیق درباره تخمین مدل و استنتاج آماری دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره تخمین مدل و استنتاج آماری


تحقیق درباره تخمین مدل و استنتاج آماری

فرمت فایل:  ورد ( قابلیت ویرایش ) 


قسمتی از محتوی متن ...

 

تعداد صفحات : 23 صفحه

تخمین مدل و استنتاج آماری بررسی ایستایی (ساکن بودن) سری های زمانی قبل از تخمین مدل، به بررسی ایستایی می پردازیم.
می توان چنین تلقی نمود که هر سری زمانی توسط یک فرآیند تصادفی تولید شده است.
داده های مربوط به این سری زمانی در واقع یک مصداق از فرآیند تصادفی زیر ساختی است.
وجه تمایز بین (فرآیند تصادفی) و یک (مصداق) از آن، همانند تمایز بین جامعه و نمونه در داده های مقطعی است.
درست همانطوری که اطلاعات مربوط به نمونه را برای استنباطی در مورد جامعه آماری مورد استفاده قرار می دهیم، در تحلیل سریهای زمانی از مصداق برای استنباطی در مورد فرآیند تصادفی زیر ساختی استفاده می کنیم.
نوعی از فرآیندهای تصادفی که مورد توجه بسیار زیاد تحلیل گران سریهای زمانی قرار گرفته است فرآیندهای تصادفی ایستا می باشد. برای تاکید بیشتر تعریف ایستایی، فرض کنید Yt یک سری زمانی تصادفی با ویژگیهای زیر است: (1) : میانگین (2) واریانس : (3) کوواریانس : (4) ضریب همبستگی : که در آن میانگین ، واریانس کوواریانس (کوواریانس بین دو مقدار Y که K دوره با یکدیگر فاصله دارند، یعنی کوواریانس بین Yt و Yt-k) و ضریب همبستگی مقادیر ثابتی هستند که به زمان t بستگی ندارند. اکنون تصور کنید مقاطع زمانی را عوض کنیم به این ترتیب که Y از Yt به Yt-k تغییر یابد.
حال اگر میانگین، واریانس، کوواریانس و ضریب همبستگی Y تغییری نکرد، می توان گفت که متغیر سری زمانی ایستا است.
بنابراین بطور خلاصه می توان چنین گفت که یک سری زمانی وقتی ساکن است که میانگین، واریانس، کوواریانس و در نتیجه ضریب همبستگی آن در طول زمان ثابت باقی بماند و مهم نباشد که در چه مقطعی از زمان این شاخص ها را محاسبه می کنیم.
این شرایط تضمین می کند که رفتار یک سری زمانی، در هر مقطع متفاوتی از زمان، همانند می باشد. آزمون ساکن بودن از طریق نمودار همبستگی و ریشه واحد یک آزمون ساده برای ساکن بودن براساس تابع خود همبستگی (ACF) می باشد.
(ACF) در وقفه k با نشان داده می شود و بصورت زیر تعریف می گردد. از آنجاییکه کوواریانس و واریانس، هر دو با واحدهای یکسانی اندازه گیری می‌شوند، یک عدد بدون واحد یا خالص است.
به مانند دیگر ضرایب همبستگی، بین (1-) و (1+) قرار دارد.
اگر را در مقابل K (وقفه ها) رسم نماییم، نمودار بدست آمده، نمودار همبستگی جامعه نامیده می شود.
از آنجایی که عملاً تنها یک تحقق واقعی (یعنی یک نمونه) از یک فرآیند تصادفی را داریم، بنابراین تنها می‌توانیم تابع خود همبستگی نمونه، را بدست آوریم.
برای محاسبه این تابع می‌بایست ابتدا کوواریانس نمونه در وقفه K و سپس واریانس نمونه را محاسبه نماییم. که همانند نسبت کوواریانس نمونه به واریانس نمونه است.
نمودار در مقابل K نمودار همبستگی نمونه نامیده می شود.
در عمل وقتی مربوط به جامعه را ندایم و تنها را براساس مصداق خاصی از فرآیند تصادفی در اختیار داریم باید به آزمون فرضیه متوسل شویم تا بفهمیم که صفر است یا خیر.
بارتلت (1949) نشان داده است که اگر یک سری زمانی کاملاً تصادفی یعنی نوفه سفید باشد، ضرایب خود همبستگی نمونه تقریباً دارای توزیع نرمال با میانگین صفر و واریانس م

متن بالا فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.شما بعد از پرداخت آنلاین فایل را فورا دانلود نمایید

بعد از پرداخت ، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.


دانلود با لینک مستقیم


تحقیق درباره تخمین مدل و استنتاج آماری

تحقیق درمورد پیش بینی سطح آب در مخزن با استفاده از سیستم استنتاج فازی – عصبی تطبیقی 79 ص

اختصاصی از هایدی تحقیق درمورد پیش بینی سطح آب در مخزن با استفاده از سیستم استنتاج فازی – عصبی تطبیقی 79 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 79

 

پیش بینی سطح آب در مخزن با استفاده از سیستم استنتاج فازی – عصبی تطبیقی

(ANFIS)

مقدمه:

سدها و مخازن مهمترین و موثرترین سیستم ذخیره آب می باشند که توزیع نابرابر مکانی و زمانی آب را تغییر می دهند. آنها نه تنها در تامین آب شرب، تولید انرژی برقابی و آبیاری زمین های پایین دست کاربرد داشته، بلکه در به حداقل رسانی خسارات ناشی از سیلاب و خشکسالی نیز نقش موثری را ایفا می کنند. بدون شک به منظور استفاده کامل از آب موجود، مدیریت بهینه مخازن بسیار با اهمیت می باشد. مدیریت مخزن مجموعه ای از تصمیم ها را در بر می گیرد که جمع آوری و رهاسازی آب در طول زمان را مشخص می کنند. با توجه به کارکردهای مختلف مخازن، پیش بینی دقیق دبی ورودی و سطح آب می تواند در بهینه سازی مدیریت منابع آب، بسیار موثر باشد. با توجه به وجود روابط غیرخطی، عدم قطعیت زیاد و ویژگی های متغیر زمانی در سیستم های آبی، هیچ یک از مدل های آماری و مفهومی پیشنهاد شده به منظور پیش بینی دقیق سطح آب نتوانسته به عنوان یک مدل برتر و توانا شناخته شوند[1]. امروزه سیستم های هوشمند به منظور پیش بینی یک چنین پدیده های پیچیده و غیرخطی، بسیار مورد استفاده قرار می گیرند. روش بدیع سیستم استنتاج فازی – عصبی تطبیقی (ANFIS) یکی از این روشهاست که یک شبکه پس خور چند لایه می باشد و از الگوریتمهای یادگیری شبکه عصبی و منطق فازی به منظور طراحی نگاشت غیرخطی بین فضای ورودی و خروجی استفاده می کند. ANFIS با توجه به توانایی در ترکیب قدرت زبانی یک سیستم فازی با قدرت عددی یک شبکه عصبی، نشان داده است که در مدل سازی فرایندهای همچون مدیریت مخازن [2،3]، سری های زمانی هیدرولوژیکی [4] و برآورد رسوب [5] بسیار قدرتمند می باشند.

هدف اصلی این تحقیق بررسی توانایی سیستم استنتاج فازی – عصبی تطبیقی جهت پیش بینی سطح آب در مواقع سیلابی و به صورت ساعتی می باشد. به این منظور از اطلاعات اشل پنج ایستگاه بالادست سد دز، جهت پیش بینی سطح آب در مخزن این سد استفاده شد. همچنین به منظور بررسی توانایی شبکه های فازی – عصبی در تقابل با تصمیمات بشری، دو الگوی متفاوت یکی با در نظر گرفتن خروجی مخزن به عنوان متغیر ورودی و دیگری بدون این متغیر به کار گرفته شد.

مواد و روشها

سیستم استنتاجی فازی – عصبی تطبیقی (ANFIS)

از زمانی که پروفسور عسگرزاده تئوری منطق فازی را به منظور توصیف سیستم های پیچیده پیشنهاد داد، این منطق بسیار مشهور شده است و به طور موفقیت آمیزی در مسائل مختلف، به ویژه کنترل کننده هایی مثل راکتور شیمیایی، قطارهای خودکار و راکتورهای هسته ای به کار گرفته شده است. اخیرا منطق فازی برای مدل کردن مدیریت مخازن و حل ویژگیهای مبهم آنها پیشنهاد شده است. با وجود این، مشکل اصلی منطق فازی این است که روند سینماتیکی برای طراحی یک کنترل کننده فازی وجود ندارد. به عبارت دیگر، یک شبکه عصبی این توانایی را دارد که از محیط آموزش ببیند (جفت های ورودی – خروجی)، ساختارش را خود مرتب کند و با شیوه ای، تعامل خود را تطبیق دهد. بدین منظور پروفسور جنگ در سال 1993 مدل ANFIS را ارائه کرد که قابلیت ترکیب توانایی دو روش مذکور را داشت[6].

ساختار و الگوریتم: [1]

ANFIS قابلیت خوبی در آموزش، ساخت و طبقه بندی دارد و همچنین دارای این مزیت است که اجازه استخراج قوانین فازی را از اطلاعات عددی یا دانش متخصص می دهد و به طور تطبیقی یک قاعده – بنیاد می سازد. علاوه بر این، می تواند تبدیل پیچیده هوش بشری به سیستم های فازی را تنظیم کند. مشکل اصلی مدل پیش بینی ANFIS، احتیاج نسبتا زیاد به زمان برای آموزش ساختار و تعیین پارامترها می باشد.

به منظور ساده سازی، فرض می شود که سیستم استنتاجی مورد نظر دو ورودی x و y و یک خروجی z دارد. برای یک مدل فازی تاکاگی – سوگنو درجه اول، می توان یک مجموعه قانون نمونه را با دو قانون اگر – آنگاه فازی به صورت زیر بیان کرد:

قانون اول: اگر x برابر A1 و y برابر B1 باشد آنگاه

قانون دوم: اگر x برابر A2 و y برابر B2 باشد آنگاه

که Pi، qi و ri (i=1,2) پارامترهای خطی در بخش تالی مدل فازی تاکاگی – سوگنو درجه اول هستند. ساختار ANFIS شامل پنج لایه می شود (شکل 1) که معرفی خلاصه ای از مدل در پی می آید:

لایه اول، گره های ورودی: هر گره از این لایه، مقادیر عضویتی که به هر یک از مجموعه های فازی مناسب تعلق دارند، با استفاده از تابع عضویت تولید می کنند.

که x و y ورودی های غیرفازی به گره I و Ai و Bi (کوچک، بزرگ و ...)، برچسب های زبانی هستند که به ترتیب با توابع عضویت مناسب Aiμ و Biμ مشخص می شوند. در اینجا معمولا از فازی سازهای گوسی و زنگی شکل استفاده می شود. باید پارامترهای این توابع عضویت که به عنوان پارامترهای مقدماتی در این لایه شناخته می شوند، مشخص شوند.

لایه دوم، گره های قاعده: در لایه دوم، عملگر " و" (AND) به کار برده می شود تا خروجی (قوه اشتعال) که نمایانگر بخش مقدم آن قانون است، بدست می آید. قوه اشتغال به مقدار درجه ای که بخش مقدم یک قانون فازی برآورده شده، گفته می شود و به تابع خروجی آن قانون شکل می دهد. از این رو، خروجی های O2,k این لایه، حاصل ضرب درجات مربوط به لایه اول هستند.


دانلود با لینک مستقیم


تحقیق درمورد پیش بینی سطح آب در مخزن با استفاده از سیستم استنتاج فازی – عصبی تطبیقی 79 ص

تحقیق در مورد تخمین مدل و استنتاج آماری

اختصاصی از هایدی تحقیق در مورد تخمین مدل و استنتاج آماری دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 24

 

تخمین مدل و استنتاج آماری

بررسی ایستایی (ساکن بودن) سری های زمانی

قبل از تخمین مدل، به بررسی ایستایی می پردازیم. می توان چنین تلقی نمود که هر سری زمانی توسط یک فرآیند تصادفی تولید شده است. داده های مربوط به این سری زمانی در واقع یک مصداق از فرآیند تصادفی زیر ساختی است. وجه تمایز بین (فرآیند تصادفی) و یک (مصداق) از آن، همانند تمایز بین جامعه و نمونه در داده های مقطعی است. درست همانطوری که اطلاعات مربوط به نمونه را برای استنباطی در مورد جامعه آماری مورد استفاده قرار می دهیم، در تحلیل سریهای زمانی از مصداق برای استنباطی در مورد فرآیند تصادفی زیر ساختی استفاده می کنیم. نوعی از فرآیندهای تصادفی که مورد توجه بسیار زیاد تحلیل گران سریهای زمانی قرار گرفته است فرآیندهای تصادفی ایستا می باشد.

برای تاکید بیشتر تعریف ایستایی، فرض کنید Yt یک سری زمانی تصادفی با ویژگیهای زیر است:

(1) : میانگین

(2) واریانس :

(3) کوواریانس :

(4) ضریب همبستگی :

که در آن میانگین ، واریانس کوواریانس (کوواریانس بین دو مقدار Y که K دوره با یکدیگر فاصله دارند، یعنی کوواریانس بین Yt و Yt-k) و ضریب همبستگی مقادیر ثابتی هستند که به زمان t بستگی ندارند.

اکنون تصور کنید مقاطع زمانی را عوض کنیم به این ترتیب که Y از Yt به Yt-k تغییر یابد. حال اگر میانگین، واریانس، کوواریانس و ضریب همبستگی Y تغییری نکرد، می توان گفت که متغیر سری زمانی ایستا است. بنابراین بطور خلاصه می توان چنین گفت که یک سری زمانی وقتی ساکن است که میانگین، واریانس، کوواریانس و در نتیجه ضریب همبستگی آن در طول زمان ثابت باقی بماند و مهم نباشد که در چه مقطعی از زمان این شاخص ها را محاسبه می کنیم. این شرایط تضمین می کند که رفتار یک سری زمانی، در هر مقطع متفاوتی از زمان، همانند می باشد.

آزمون ساکن بودن از طریق نمودار همبستگی و ریشه واحد

یک آزمون ساده برای ساکن بودن براساس تابع خود همبستگی (ACF) می باشد. (ACF) در وقفه k با نشان داده می شود و بصورت زیر تعریف می گردد.

 

از آنجاییکه کوواریانس و واریانس، هر دو با واحدهای یکسانی اندازه گیری می‌شوند، یک عدد بدون واحد یا خالص است. به مانند دیگر ضرایب همبستگی، بین (1-) و (1+) قرار دارد. اگر را در مقابل K (وقفه ها) رسم نماییم، نمودار بدست آمده، نمودار همبستگی جامعه نامیده می شود. از آنجایی که عملاً تنها یک تحقق واقعی (یعنی یک نمونه) از یک فرآیند تصادفی را داریم، بنابراین تنها می‌توانیم تابع خود همبستگی نمونه، را بدست آوریم. برای محاسبه این تابع می‌بایست ابتدا کوواریانس نمونه در وقفه K و سپس واریانس نمونه را محاسبه نماییم.

 

که همانند نسبت کوواریانس نمونه به واریانس نمونه است. نمودار در مقابل K نمودار همبستگی نمونه نامیده می شود. در عمل وقتی مربوط به جامعه را ندایم و تنها را براساس مصداق خاصی از فرآیند تصادفی در اختیار داریم باید به آزمون فرضیه متوسل شویم تا بفهمیم که صفر است یا خیر. بارتلت (1949) نشان داده است که اگر یک سری زمانی کاملاً تصادفی یعنی نوفه سفید باشد، ضرایب خود همبستگی نمونه تقریباً دارای توزیع نرمال با میانگین صفر و واریانس می باشد که در آن n حجم نمونه است. براین اساس می توان یک فاصله اطمینان، در سطح 95 درصد ساخت. بدین ترتیب اگر تخمینی در این فاصله قرار گیرد، فرضیه(=0) را نمی توان رد کرد. اما اگر تخمینی خارج از این فاصله اعتماد قرار گیرد می توان صفر بودن را رد کرد.

آزمون دیگری نیز بصورت گسترده برای بررسی ایستایی سریهای زمانی بکار می‌رود که به آزمون ریشه واحد معروف است. برای فهم این آزمون مدل زیر را در نظر بگیرید:

Yt = Yt-1+Ut


دانلود با لینک مستقیم


تحقیق در مورد تخمین مدل و استنتاج آماری

مقاله قواعد استنتاج

اختصاصی از هایدی مقاله قواعد استنتاج دانلود با لینک مستقیم و پر سرعت .

مقاله قواعد استنتاج


مقاله قواعد استنتاج

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)

تعداد صفحات: 15

اگرچه نمودارهای ون از جمله روشهای تصمیم گیری  برای قیاسهای صوری محسوب می شوند ولی این نمودارها برای استدلالات پیچیده تر مناسب نیستند، زیرا خواندن این نمودارها مشکل است. قیاس صوری مشکل اساسی تر دیگری دارد و آن این است که فقط بخش کوچکی از عبارات منطقی را می توان به وسیله قیاس صوری بیان کرد. در واقع قیاس صوری طبقه بندی شده فقط شامل عبارات گروه بندی شده I,E,A وO می باشد. منطق گزاره ای، ابزار دیگری را برای توصیف استدلال ارائه می دهد. در حقیقت ما غالبا بدون آنکه بدانیم از منطق گزاره ای استفاده می کنیم. به عنوان مثال استدلال گزاره ای زیر را در نظر بگیرید :

اگر برق باشد، کامپیوتر کار خواهد کرد


دانلود با لینک مستقیم


مقاله قواعد استنتاج