هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق استرس در کودکان(آماده چاپ)

اختصاصی از هایدی تحقیق استرس در کودکان(آماده چاپ) دانلود با لینک مستقیم و پر سرعت .

تحقیق استرس در کودکان(آماده چاپ)


تحقیق استرس در کودکان(آماده چاپ)

بیشتر والدین دنیای کودک را دنیایی پر از شور و نشاط و بدون هرگونه استرس و نگرانی می‌دانند و از آنجا که خودشان از فرزندانشان محافظت و مراقبت کرده و نیازهایشان را تامین می‌کنند، خیلی به عوامل استرس‌زا توجه ندارند.

در پاسخ به این پرسش که عوامل استرس‌‌زای کودکان چیست؟ باید گفت، عوامل گوناگونی مثل محیط خانواده، بیماری یا مرگ یکی از افراد خانواده، جدایی پدر و مادر از یکدیگر، ترس از تاریکی و... وجود دارد که می‌تواند باعث ایجاد استرس در کودکان شود، حتی کودکان کم سن و سال.

علائم استرس کودکان

استرس در کودکان کم‌سن و سال می‌تواند به صورت‌ مکیدن شست، ناخن جویدن، انگشت در بینی کردن، شب ادراری و... باشد اما در کودکان بزرگ‌تر می‌تواند به شکل‌ پرخاشگری، بدزبانی، اذیت کردن دیگران، کابوس دیدن، دروغ گفتن، بی‌نظمی، نداشتن اعتماد به دیگران و... باشد.

استرس در کودکان

این تحقیق پس از ساعتها مطالعه و ترجمه متون علمی برای شما دوستان عزیز آماده شده است

تعداد صفحات:27

فرمت :doc


دانلود با لینک مستقیم


تحقیق استرس در کودکان(آماده چاپ)

مقاله اندازه گیری

اختصاصی از هایدی مقاله اندازه گیری دانلود با لینک مستقیم و پر سرعت .

فرمت :WORD                                                     تعداد صفحه :554

  1. چشم انداز

تمامی مهندسین ( بدون توجه به اینکه در چه شاخه ای کار می کنند )پیوسته با مسائل اندازه گیری روبرو هستند . مسائلی نظیر اندازه گیری جرم ، نیرو ، دما ، مقدار یک جریان الکتیرکی ، طول ،زاویه و غیره و یا مسائلی مربوط به اثرات جمعی از آنها .نتایج این قبیل اندازه گیری ها خط مشیی را به مهندس نشان می دهد و اطلاعاتی را فراهم می کند که می توان بر اساس آنها تصمیم گرفت .

این قطبیل اندازه گیری ها بخشی از علم متالوژی را شکل می دهد به خصوص مربوط به مهندسان مکانیک یا مهندسان تولید می شوند چرا که با اندازه گیری طول و زوایا ارتباطند .

در این بین طول یکی از اجزاء مهم اندازه گیری است و با کاربرد خاصی از اندازه گیری خطی می توان اندازه گیری زاویه را نز انجام داد.

در حقیقت مقصود از اندازه گیری حصول وسیله ای است برای کمک  به تصمیم گیری هر چه بهتر. البته باید گفت که اندازه گیری تا زمانی بر اساس دقت قابل قبولی نباشد یک اندازه گیری کامل نخواهد بود.اگر چه هیچ اندازه گیری دقیق نیست اما ذکر دقت در اندازه گیری به ابعاد اندازه گیری بسیار مفید است. می دانیم عضو لاینفک اندازه گیری است و گریزی از آن نیست ولی به حد اقل رساندن آن ممکن است. در این جا مثالی آورده می شود: فرض کنید که یک اپراتور در اختیار دارید و اندازه اسمی آن 30 mm است. آیا بیان اندازۀ اپراتور به تنهایی کافی است؟ حال اطلاعات زیر را در نظر می گیریم:

(a : خطای اندازه گیری شده در راپراتور -0.0002mm است.

(b : و دقت آن +-0.0004 mm است.

حال هر کسی از این راپراتور استفاده کند اطلاعات کاملی در اختیار دارد و د جهت اندازه گیری دقیق تر یاری اوست.

گاهی اوقات دقت اندازه گیری بالا نیست و می توان از خطا چشم پوشی کرد مثلاً فرض کنید از یک راپراتور(بلوک اندازه گیری) برای اندازه گیری خط مبنای یک ورنیه که فقط mm 0.022 دقت دارد استفاده شود. در اینجا خطا قابل چشم پوشی است چرا که مقدار آن ناچیز است حالا اگر از همین راپراتور برای تنظیم یک کمپراتور (مقیاسه گر) که درجه بندی آن تا mm 0.0011 را نشان می دهد استفاده شود مقدار خطا مهم بوده و باید در نظر گرفته شود. با ترتیب دقت اندازه گیری راپراتور دقت کمپراتور، کل دقت اندازه گیری حاسل می شود.

در انتها باید گفت این فصل مرجعی خواهد شد برای مطالب بعدی کتاب .

 

2-1    انواع خطاها

معمولا در هر اندازه گیری دو نوع خطا می توان تشخیص داد. یک نوع آنهایی می باشند که با دقت بیشتر در کار می توان حذفشان کرد و نوع دیگر که عضو لاینفک اندازه گیری می باشد و به عبارت دیگر نمی توان آنها را به صفر رساند.

1-2-1) خطاهایی که می توان آنها را حذف کرد (آنها را به صفر رساند)

الف) خطاهای ناشی از غلط خواندن:

مثلاً یک میکرومتر به مقدار 28/5 را نشان می دهد 78/5 یا 28/6 خوانده می شود.

ب) خطاهای محاسباتی.

این نوع خطا معمولاً به هنگام جمع کردن اعداد پیش می آید. مثلاً برای جمع کردن یک ستون از اعداد دو راه وجود دارد یآ از بالا، اعداد را با هم جمع کنیم یا از پایین ستون شروع به جمع زدن می کنیم که در هر دو صورت باید جوابها بر هم منطبق باشند در بسیاری مواقع این قبیل خطاها (همچنین خطاهای ناشی از غلط خواندن) نتایج دور از انتظاری به دست می آیند و با تکرار اندازه گیری آشکار می شود. البته همیشه با تکرار ایرادها مشخص نمی شود تنها راه جلوگیری از پیشامد چنین خطاهایی دقت و توجه به جزئیات است.

ج) خطاهای محوری :

این نوع خطاها زمانی اتفاق می افتد که وسیله اندازه گیری با قطعه کاردر راستای صحیح قرار نداشته باشند که معمولا بین اندازه واقعی یعنی D ومقدار غیر حقیقی یعنی M یک رابطه مثلثاتی برقرار خواهد بود.(شکل1--1)

با توجه به شکل، صفحه مدرج با قطعه کار زاویه  می سازد بنابراین (1-1)   در حالت دیگری همین نوع خطا در اثر نا راستایی بین امتداد خط دید و درجه بندی دستگاه اندازه گیری پدید می آیند.

اکثر اندازه گیری ها کم و بیش متأثر از شرایط محیطی در آن نانجام می شوند هستند و مهمترین عامل نیز دماست و هم دمای محیط چندان سودمند نخواهد بود بنابریان باید سعی کرد خود جسم نیز دمای ثابت و حتی الامکان دمای محیط دمای محیط اندازه گیری را داشته باشد. دست زدن به وسیله اندازه گیری خود می تواند دمای وسیله را تغییر داده از دقت آن بکاهد.

بنابراین بهتر است که در طول مدت انداز گیری کلیه وسایل روی یک سطح چوبی  یا پلاستیکی قرار داده شوند، همچنین تا آنجا که امکان دارد وسیله اندازه گیری دارای دسته عایق باشد.

وقتی که درباره اندازه گیری ، بحث می شود باید دو نکته مهم را مورد توجه قرار داد :

1) اندازه گیری مستقیم: قطعه مستقیماً به وسیله ابزار اندازه گیری ، اندازه گرفته می شود. در این حالت تأثیر حاسل از به کار بردن یک دمای غیر استاندارد تولید یک خطای نسبی می کند.

           (2-1)            

L :طول واقعی (اندازه گرفته شده در دمای استاندارد

X : ضریب انبساط طولی قطعه

 : میزان انحراف دما از دمای استاندارد

(2) اندازه گیری غیر مستقیم (نسبی یا مقایسه ای ):

اگر فرض کنیم که دو قطعه داریم که ضریب ننبساطی طولی آنها به ترتیب   باشند.

 

آنگاه  خطای ناشی از کاربرد دمای غیر استاندارد عبارت است از.

در صورتیکه مقادیر x1 و x2 کوچک باشند و میزان خطا کوچک می شود.

با توجه به مطالب فوق واضح است که اندازه گیری مستقیم هم دما بودن تمامی اجزاء سیستم اندازه گیری مهم بوده بهتر است که تا حد امکان نزدیک به دمای استاندارد باشد.

در بعضی از وسائل اندازه گیری علاوه بر ، عوامل دیگر نظیر میزان رطوبت هوا، فشار هوا، میزان دی اکسید کربن و... قادر به تغییر دقت اندازه گیری می باشند. پس باید در تمام طول  اندازه گیری عوامل فوق ثبت شده و بعد از اندازه گیری آنها تغییر ایجاد می کنند می توان به تداخل سنجها اشاره کرد.

هـ) خطاهای ناشی از تغییر شکل کشسان :

هر شیء کشسان برای تحمل نیرویی بر آن وارد می شود تغییر شکل می دهد به بزرگی این تغییر شکل وابسته به بزرگی نیرو، بزرگی سطح تماس و خواص میکانیکی مواد در حال تماس دارد. پس باید مراقب بود تا میزان بار یا فشار اندازه گیری به هنگام استفاده از روش اندازه گیری. مقایسه ای (یعنی اندازه گیری با کمپراتورها)ثابت باشند.

در بسیاری از کارخانجات برای داشتن اندازه گیری بهتر از کمپراتورها و میکرومترهای رومیزی استفاده می کنند فشار اندازه گیری و منظور از فشار بین سطوح قطعۀ مورد اندازه گیری و وسیلۀ اندازه گیری است ثابت است و اگر سطوح تماس که البته می توانند از انواع مختلف باشند صحیح تنظیم نشوند اندازه واقعی به دست نخواهد آمد.

بنابراین قبل از خواندن هر گونه اندازه گیری یا هر برداشتی از اندازه و ابعاد قطعه کار، باید آن را نسبت به وسیلۀ اندازه گیرةی دقیقاً تنظیم نمود. فرمول زیر تغییر شکل نهایی، در اثر فشارw وارد بر قطعه ای کره ای شکل را نشان می دهد. به عبارت دیگر اگر یک کره استاندارد به شعاع استاندارد  و یک قطعه اندازه گیری کره ای شکل به شعاع قابل اندازه گیری  داشته باشیم که هر دو تحت فشار اندازه گیری W قرار دارند تغییر در فاصله مراکز این دو کره یعنی  ، می شود :

 تغییر شکل نهایی    (4-1)

 و  به ترتیب ضرایب پواسان برای قطعه استاندارد و قطعه کار می باشند. و  و  نیز برای قطعه استاندارد و قطعه کار می باشند. اگر این اندازه گیری به وسیله یک کمپراتور و در دو مرحلۀ A و B انجام شود مقدار خطای  خواهد بود که  تغیؤی شکل نهایی برای مرحلۀ اول و  برای مرحله دوم است. ضمناً باید مقادیر  به طور جداگانه برای هر دو حالت A وB تعیین شود.

نوع دیگر ازتغییر  این شکل کشسان وقتی اتفاق می افتد که یک جسم زیر فشار وزن خود شکم دهد و خم شود) در این حالت برای خطا می توان موقعیت تکیه گاه را تغییر داد. (شکل 2-1)

 

 

 

(a استاندارد خط و میله ی ها که شیب انتهای میله صفر است.

(b لبه های مستقیم انتهایی مشتبه مرکز میله تغییر شکل می دهد.

شکل 2-1) موقعیت های تکیه گاهی برای حالات مختلفی از اندازه گیری (به جنبش ضمیمه مراجعه شود) در حالت اول می بینید که شیب در انتهای قطعه صفر است ولی در حالت دوم شیب در دو انتهای قطعه به همان میزان شیب در وسط قطعه است پس تغییر شکل کشسان حاصل از وزن قطعه در حالت اول کمترین تأثیر را بر طول دارد.

2-2-1 خطاهایی که نمی توان آنها را حظف کرد.

هیچ اندازه گیری نمی تواند کاملاً دقیق باشد چرا که هر مقدرا عددی ثبت شده به چشم انسان بستگی دارد و انسان  می تواند در هر مرحله از خواندن اشتباه کند بنابراین خواندن درجه بندی وسیله اندازه گیری به توانایی مقصدیمتعددی در خواندن درجه بندی و در بعضی حالات نیز به حس لامسه مقصدی وابسته است.

الف) خطاهای ناشی از درجه بندی

اگر درجه بندی که اندازه ها از روی آن خوانده می شود دارای خطا باشد بدیهی است که خود اندازه گیری هم دارای خطا خواهد شد. اسن خطا تا حدودی با میزان سازی در جه بندی وسایل اندازه گیری مطابف استانداردهای معین طول بر طرف می شود. با این حال خطای ناشی از درجه بندی را در اندازه گیری های مقایسه ای با کوچک ترین تقسیمات کاهش می دهند.

ب) خطاها در قرائت.

با چه دقتی می توان یک درجه بندی را خواند؟ البته این بستگی دارد به ضخامت خط کشی ها (درجات) و فاصله بین تقسیمات و ضخامت خط مینا با عقریه ای که برای خواندن بکار می روند.

برای راهنمایی بیشتر در نظر بگیرید که هر گاه عقربه یک وسیله اندازه گیری روی یکی از تقسیمات قرار بگیرد دقت خواندن مقدار عددی، %10I و هر گاه عقربه وسیله اندازه گیری بیت تقسیمات قرار گرفت مقدار دقت %20I دقت تقسیمات درجه بندی باشد .

در این صورت اگر عقربه مقدار 3- واحد (واحد در اینجا واحد تقسیمات درجه بندی است) را نشان دهد و دقت درجه بندی (کوچک ترین مقداری را که درجه بندی نشان می دهد) 0/001mm باشد اندازه نسبی که عقربه نشان داده است -0/003mm و دقت آن 0/0002mm  می شود.

لازم به ذکر است که وقتی یک کمپراتور (مقایسه گر) عمل اندازه گیری را انجام می دهد این دسته از خطاها دوبار اتفاق می افتند. یکبار در حالی که دستگاه بوسیله گیبهای مادر (اندازه گیر های مادر) تنظیم می شود و یکبار زمانی که اندازه قطعه کار از روی دستگاه قرائت میشود.

 

ج) خطاهای ابزار گیری :

انواع خطاهای مختلفی که در صفحات گذشته شرح داده شدند از انواع جمع شونده هستند به این معنی که در بعضی مواقع باید مقدار دیگری به عنوان حساسیت که در اثر لمس کردن ابزار یا قطعه کار پیش می آید به آنها اضافه کرد . که البته مقدار آن هم به نوع وسیله اندازه گیری که مورد استفاده قرار گرفته است بستگی دارد.

عموماً برای حذف چنین اثری (حساسیت لامسه) که کمپراتورها و مقایسه گرها استفاده می شود استفاده می شود. در اینجا فرض می کنیم که می خواهیم قطر یک اندازه گیر توپظی ساده با قطر اسمی mm 25  را به دست آوریم.

اندازه گیری به کمک کمپراتوری ا بزرگ نمایی 5000  که با یک راپراتور به طول اسمی mm25  و با خطای معلوم mm0.0001   و دقت mm 0.0002  تنظیم شده است انجام می شود.

وقتی راپراتور در دستگاه قرار دارد مقدار 0 قرائت می شود و زمانی که اندازه کسر توپی ار در دستگاه قرار می دهیم مقدار 2/1-  (از تصمیمات درجه بندی) قرائت می شود. ضمناً اثر تغییر شکل جنس هر دو از یک ماده است ضمناً ه هنگام تماس سطوح شرایط به نحوی است که تغییر در آنها بسیار جزئی است. مسئله ذیل به صورت جدولی تنظیم شده است.


دانلود با لینک مستقیم


مقاله اندازه گیری

مقاله شیمی

اختصاصی از هایدی مقاله شیمی دانلود با لینک مستقیم و پر سرعت .

مقاله شیمی


مقاله شیمی

فرمت :WORD                                                     تعداد صفحه :89

مقدمه

کمتر کسی است که از اهمیت محلولها غافل باشد تمام مواد برای اینکه جذب بدن شوند باید بصورت محلول درآیند تا بتوانند از غشاء سلول عبور نمایند. همچنین طبیعت اطراف ما براساس انحلال و عدم انحلال مواد شکل گرفته است .

تاریخ گسترده شیمی بر اهمیت فوق العاده پدیده حلالیت گواهی می دهد . طبیعت اسرار آمیز محلولها، فلاسفه با ستان را به تفکر واداشت کیمیاگران قرون وسطی در جستجوی طلا و زندگانی ابدی بودند از اینرو علاقمند به تهیه آب حیات و حلال جهانی[1] بودند.

با گذشت زمان و با افزایش علم بشر، علوم و اعتقادات خرافه ای جای خود را به دانش منطقی و بر مبنای واقعیت داد . اما با این وجود با توسعه علم شیمی از اهمیت موضوع کم نشد و شیمیدانان همیشه و در همه جا با مسائل مربوط به حلالیت مواجه می شوند. آنها از تفاوت حلالیت مواد، در فرآیندهای جداسازی و خالص سازی بهره می گیرند و روشهای تجریه ای آنها تقریبا به طور کامل بر ان استوار است. اغلب واکنشهای شیمیایی در فاز محلول انجام می شود و تحت تاثیر حلالیت اجزاء درون محلول قرار دارد. نیروهای جاذبه و دافعه ای که حلالیت یک گونه در فاز مایع یا جامد را تعیین می کنند هر نوع تعادل فازی بین دو یا چند جزء را کنترل می کنند . محلولهای الکترولیت بدلیل اهمیتی که دارند توجه شیمدانان را به خود معطوف داشته اند .

فارای، نخستین شخصی بود که واژه الکترولیت رادر مورد ترکیباتی که محلول یا مذاب آنها رسانای الکتریسیته است به کار برد و واژه های دیگری از قبیل یون، کاتیون، آنیون و غیره را در الکتروشیمی رایج ساخت و بعد از او آرنیوس به مطالعه و بررسی خواص محلولهای الکترولیت پرداخت و نظریه نسبتﴼ دقیق و روشنی را در مورد در رفتار الکتریکی محلولهای الکترولیت بیان نموده و به این ترتیب که واحدهای اجسام الکترولیت در موقع حل شدنشان در آب، به دو یا چند ذره دارای بار الکتریکی تقسیم می شوند و این ذرات باردارد که یون نام دارند عهده دار رسانش الکتریسیته در محلول هستند. تا سال 1920 معلوم شده بود که رفتار الکترولیتها در غلظتهای کم از محلول های غیر الکترولیت متفاوت است .

در سال 1920 میلنر[2] به صورت تئوری توضیح داد . که علت این تفاوت نیروهای بابرد بلند می باشد. در سال 1923 دبای هوکل توضیح ساده ای را ارائه دادند که با در نظر گرفتن نیروهای برد بلند بین یونها بدست آمده بود . سپس نظریه پردازهای زیادی، مسئله یک الکترولیت را با دقت زیادمورد بررسی قراردادند و قانون حدی دبای-هوکل را تصحیح کردند. حتی بعضی از این نظریه ها برای توضیح رفتار محلولهای الکترولیت غلیظ به کار رفت. پیشرفتهای مهم در این زمینه درحدود 50 سال گذشته بوده است، که حتی در مورد الکترولیتهای مخلوط، تا غلظتهای نسبتا بالا نیز نظریه هایی ارائه گردید. گوگنهایم معادله دبای- هوکل را برای غلظتهای بالا اصلاح کرد. در سال 1973 پیترز مدل جامعی را برای پیش بینی ضرایب فعالیت الکترولیتها ارائه داد . سپس دانشمندان زیادی از جمله چن ، لی، سون، سیمون، کوپمات و بلوم و ورا این کار را برای پیش بینی نظری ضرایب فعالیت ادامه دادند. علاوه بر این روشهای نظری، روشهای تجربی نیز برای اندازه گیری ضرایب فعالیت وجود دارد . مانند افزایش نقطه جوش، کاهش نقطه انجماد محلول نسبت به حلال، کاهش فشار بخار حلال، فشار اسمزی. که میزان تغییر این خواص در محلولهای الکترولیت چند برابر محلولهای غیر الکترولیت با مولالیته های یکسان است.

سوال اساسی در مورد انحراف از ایده آلی در محلولهای الکترولیت بر پایه نیروهای بین ذرات است لذا در شروع بحث در فصل اول به معرفی نیروهای بین ذره ای و نحوه ای عملکردشان می پردازیم، سپس در مورد انواع محلولها در روابط ترمودینامیکی حاکم بر آنها شرح مبسوطی خواهیم داد ودر آخر مدلهای ارائه شده برای تعیین ضریب فعالیت و روشهای تجربی اندازه گیری ضریب فعالیت را می آوریم. و در فصل دوم نحوه استفاده از روش پتانسیومتری برای تعیین ضرایب میانگین فعالیت برای مخلوط الکترولیتها  و تعیین پارامترهای بر هم کنش یونی دوتایی و سه تایی   برای مخلوط الکترولیت مورد نظر شرح خواهیم داد .

بخش اول:

 

 

مبانی نظری

 نیروهای بین ذره ای

اصولا محلولها بر پایه تفاوت در برهم کنشهای بین ذره ای دسته بندی می شوند .

آگاهی از این برهم کنش های بین ذره ای در بسیاری از روشهای محاسباتی (مانند شبیه سازی مونتی  کارلو و شبیه سازی دینامیک مولکولی) و روشهای نظری برای محاسبه ضرایب فعالیت ضروری است.

در این فصل در مورد برهم کنش های «بلندبرد» و «کوتاه برد» و تاثیر آنها در خواص ترمودینامیکی محلولها توضیحاتی ارائه می گردد.

   1-1-1 برهم کنش های بلندبرد

اساسا نیروهای بلندبرد، بین ذرات یونی وجود دارند . نیروهای بلندبرد ماهیت الکتروستاتیکی دارند و متناسب با عکس مربع فاصله بین ذرات می باشند .[19,20,21]

از آن جائیکه این نیروها در فاصله های زیاد هم موثر هستند، به نیروهای بلندبرد موسوم هستند. در محلول های رقیق می توان فقط نیروهای با برد بلند را در نظر گرفت و از تاثیر نیروهای دیگر صرفنظر کرد. نیروهای القایی و نیروهای پراکندگی و نیروهای شیمیایی از نوع نیروهای بلندبرد هستند.[22]

  1.  برهم کنشهای کوتاه برد

این نیروها مابین ذرات یونی و نیز ذرات مولکولی وجود دارد، نیروهای جاذبه لناردجونز معمولا با معکوس توان ششم یا بالاتر از فاصله رابطه دارند و نیروهای دافعه لناردجونز هم چون در فواصل کوتاه بین ذرات (یعنی با معکوس توان دوازدهم یا بیشتر فاصله) عمل می کنند، بنابراین این نیروها هم در دسته نیروهای کوتاه برد قرار می گیرند.

همچنین پیوندهای هیدروژنی نیز جزء نیروهای کوتاه برد هستند .

اهمیت نیروهای کوتاه برد به غلظت حل شونده، بستگی دارد در محلولهایی با غلظت بالا از نمک نیروهای بابرد کوتاه از اهمیت زیادی برخوردار است. در صورتی که در غلظتهای پایین از وجود چنین نیروهایی در مقابل نیروهای بلندبرد می تواند صرفنظر کرد. مدلهای مختلفی که برای بیان خواص ترمودینامیکی محلولهای الکترولیت ارائه شدند، در بعضی موارد هر دو این نیروها (مانند مدل پیترز) و در مواردی نیز فقط نیروهای بلندبرد (مانند مدل دبای- هوکل) در نظر گرفته شده اند. اما بهترین نتایج از مقایسه با نتایج تجربی با در نظر گرفتن هردو این نیروها بدست می آید.

1-2  محلول ها و روابط ترمودینامیکی آنها

محلولها از یک دیدگاه به سه دسته تقسیم می شوند. 1- محلولهای ایده آل 2- محلولهای غیر ایده آل (حقیقی) 3- محلولهای با قاعده[3] . از دیدگاه دیگری می توان محلولها را به دو دسته تقسیم کرد: 1- محلولهای الکترولیت 2- محلولهای غیر الکترولیت که می توان گفت محلولهای غیر الکترولیت در وقتهای زیادی بصورت ایده آلی رفتار می کنند از اینرو به آنها محلولهای رقیق ایده آل می گویند (البته وجود محلولهای ایده آل تصوری بیش نیست) در واقع محلولهای الکترولیت به دو دسته ایده آل و غیر ایده آل تقسیم بندی می شوند . محلولهای الکترولیت همواره در دسته محلولهای غیر ایده آل قرار می گیرند.

 


[1] Universal salvent

[2] milner

[3] regular . solution


دانلود با لینک مستقیم


مقاله شیمی