هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق تولید انرژی با توربین های گازی

اختصاصی از هایدی دانلود تحقیق تولید انرژی با توربین های گازی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تولید انرژی با توربین های گازی


دانلود تحقیق تولید انرژی با توربین های گازی

فصل اول

مقدمه ای بر توربین های

GE,MS5001-25MW-Frame5

واحد های نیروگاه گازی از نوع GE ,MS5001-25MW Frame 5 ساخت کشور آمریکا می باشند که هر واحد آن از اجزاء کمپرسور ، اتاق احتراق ، قطعات انتقال ، توربین ، اگزوز، گیربکس و ژنراتور تشکیل می گردند.

توربین گازی یکی از انواع مولد قدرت که بدلیل کاربرد وسیع آن در تولید انرژی در نیروگاههای زمینی و نیز عامل حرکت کشتیهای در حمل و نقل تجاری و نظامی در زندگی انسان اهمیت فراوان یافته است . توربین  گاز در حقیقت نوعی از موتورهای احتراق داخلی محسوب می شود .

در این دستگاه بعوض اینکه اعمال اصلی تراکم ،احتراق و انبساط در داخل عضو واحدی رخ می دهد بصورت متناوب و یکی بعد از دیگری در محفظه های خاصی صورت می گیرد . سه عضو اصلی هر نیروگاه عبارتند از : کمپرسور که جریان پیوسته ماده را فراهم میسازد ، اتاق احتراق که بر انرژی جنبشی گازهای در حال حرکت می افزاید و ماشین انبساط(توربین)که گاز در آن انبساط یافته و انرژی مکانیکی تولید می کند [1] .

هوای محیط مطابق شکل 1-1 بافشار جو از نقطه 1 وارد کمپرسور می شود و در طبقات مختلف آن متراکم و فشار آن بالا می رود ، تا به نقطه 2 برسد .

 

شکل 1-1 سیکل باز یک توربین گاز ساده]2[

هوای فشرده تولید شده آنگاه وارد اتاق احتراق یعنی جائیکه سوخت در آن محترق می گردد ، شده و در آنجا درجه حرارت گاز بالا می رود که باعث می شود حجم گاز با فشار ثابت افزایش یابد و گاز عامل کار برای توربین فراهم گردد . پس از انبساط گاز در توربین و تبدیل مقدار از انرژی گاز به کار مکانیکی روی شافت توربین ، گاز بداخل ناحیه اگزوز میرود و بالاخره بداخل هوای آزاد تخلیه می گردد .

پره هایی که روی روتور کمپرسور نصب شده اند هوا را تحت زاویه معینی بر می گردانند ، تغییر جهتی که به این طریق ایجاد می شود سرعت هوا را کم و فشار آنرا زیاد می کند . اگر سرعت هوا را تقریباً ثابت بماند ، ارتفاع طبقه بعدی می تواند کوچکتر باشد زیرا غلظت هوای فشرده زیاد می شود . هوا که وارد پروانه کمپرسور می شود با گردش پروانه هوا بسمت بیرون یعنی به سوی متفرق کننده (Diffuser) پرتاب می شود . متفرق کننده هوای خارج شده از کمپرسور را با تبدیل سرعت به فشار ، به انرژی (فشار) تبدیل می کند [2] .

در نیروگاههای گازی مقدار گازی مقدار کمی از هوایی وارد کمپرسور می شودبه مصرف احتراق می رسد و بیشترین مقدار آن در اطراف بیرونی شعله فروزان جریان یافته و برای خنک کردن اتاق احتراق پره های توربین و اگزوز استفاده می گردد .

ساختمان هر اتاق احتراق شامل قسمتهایی به شرح زیر است [3] :

الف – آستر(Liner)

سیلندری است که از یک ورقه فلزی مشبک ساخته شده است. سوراخها طوری ترتیب داده شده اند که اختلاف هوا و سوخت به بهترین وجهی انجام بگیرد و در ضمن شعله در وسط استوانه فلزی نگه داشته شود . هوا از قسمت کمپرسور بداخل اتاق احتراق جریان می یابد ، قسمتی از هوا بداخل سیلندر های احتراق راه یافته و در آنجا با سوختی که توسط نازلهایی در قسمت جلویی اتاق احتراق پاشیده می شود ، مخلوط می گردد بقیه هوا بصورت یک پوشش خنک کن و محافظ روی بدنه داخلی و بیرونی اتاق احتراق عمل می کند  .


ب – شمع های جرقه زن(Spark plugs)

مخلوط هوا و سوخت را محترق می سازند . شعله توسط لوله های انتقال عرضی (Crossfire Tubes) به سیلندر دیگر سرایت می کند . شعله در مرکز سیلندربه وجود می آیدو توسط یک بالشتک هوا که سوراخ های لاینر سیلندر وارد می شود احاطه می گردد تا از گرم شدن بیش از حد بدنه سیلندرجلوگیری نماید . قبل از خروج گازها از سیلندر احتراق تمام سوخت بطور کامل می سوزد و گاز انبساط می یابد و به این ترتیب بر سرعت گازها افزوده می شود .

ج – قطعات مکانیکی منتقل گازهای داغ (Transition Pieces) :

گاز پس از انبساط (مرحله ب) با سرعت مکانیکی سریع السیر وارد مکانیکی منتقل کنندۀ گازهای داغ می گردد ،بعد ازعبورگازهای داغ از این قطعات مکانیکی  به قسمت توربین می رسند .

توربین ها که از دو سری نازل مرحله اول و دوم سری پرۀ مرحله اول دارای 120 عدد پره و در مرحله دوم دارای 90 عدد پره می باشند نازلها به گازهای داغ جهت داده تا با زاویه مناسب به سمت پره ها هدایت شوند . پره ها انرژی جنبشی گازها را گرفته و در شافت بصورت حرکت دورانی یا قدرت مکانیکی ظاهر می سازند . دور شافت توسط یک گیربکس از 5100 به 3100 دور در دقیقه رسانده شده تا قابل استفاده در ژنراتور گردد . گاز عبور کرده از پره های مرحله دوم وارد اگزوز شده و سیلندر داخلی بعد از هر 20000 ساعت (850 روز کار مداوم) باید تعویض گردد . بیشترین خوردگی که بر روی سیلندر داخلی مشاهده می گردد مربوط به منطقه نزدیک لوله های انتقال عرضی شعله و لبه خود خود این لوله ها می باشد بطوریکه این مناطق ترک برداشته و در حالت حادتر سوراخهایی در آنها ایجاد می گردد . به وجود آمدن ترک سوراخ در این ناحیه بعلت درجه حرارت بالایی است که در این ناحیه وجود دارد و حدوداً 1200 درجه سانتیگراد است.

...

 

فهرست مطالب

عنوان                                                                                             صفحه

فصل اول مقدمه ای بر توربین هایGE,MS5001-25MW-Frame5  

1-1مقدمه.......................................

فصل دوم- مقدمه ای برخوردگی داغ

...............................................

2-1 خوردگی داغ......................................

2-2 واکنشهای مربوط به تشکیل مواد خورنده در فرایندهای احتراق   

2-2-1 گوگرد....................................

2-2-2 سدیم.....................................

2-2-3 وانادیوم.................................

2-3 تشکیل رسوب......................................

2-4 تأثیر ناخالصیها بر خوردگی داغ...................

2-4-1 اثر ترکیبات وانادیوم.....................

2-4-2 اثر سولفات سدیم..........................

2-4-3 اثر کلرید................................

2-4-4 اثر گوگرد................................

2-5 روشهای مطالعه خوردگی داغ........................

2-5-1 روش مشعلی(Burner Rig Test) ...................

2-5-2 روش کوره ای (Furnace Test) ...................

2-5-3 روش بوته ای(Crucible Test) ...................

2-5-4 روشهای جدید در بررسی آلیاژهای مقاوم به خوردگی داغ 

2-6 مکانیزم های خوردگی داغ..........................

2-6-1 مرحلۀ شروع خوردگی داغ.....................

2-6-2 مراحل پیشرفت خوردگی داغ..................

2-6-2-1 روشهای انحلال نمکی(Fluxing) ..................

2-6-2-2 خوردگی ناشی از جزء رسوب................

2-7 خوردگی نیکل تحت اثر یون سولفات

(Sulphate- Induced Corrosin of Nickel) ..........................

2-7-1 خوردگی نیکل ناشی از سولفات در اتمسفرهای اکسیژن حاویSO3  

2-7-2 خوردگی نیکل ناشی از سولفات ..............

2-8 خوردگی آلیاژهای پایه نیکل و کبالت ناشی از سولفات در حضور اکسیژن حاوی SO3 ............................................

2-8-1-1 خوردگی آلیاژهای نیکل – کرم ناشی از یون سولفات در محیط اکسیژن حاویSO3 ........................................

2-8-1-2 خوردگی آلیاژ "Co-Cr" در مقایسه با آلیاژ "Ni-Cr" در محیط یون سولفات در محیط اکسیژن حاوی SO3 ..................

2-8-1-3 خوردگی آلیاژهای(M=Ni,Cr,..)M-Al در محیط سولفات در حضور

 2-8-2 فلاکسینگ Al2 O3 Cr2 O3 ......................

2-8-3 تأثیرات MoO3,WO3 ........................

2-8-3 تأثیرات مخلوط سولفات......................

2-9 خوردگی داغ ناشی از وانادات......................

2-9-1 مثالهای از مطالعات ترموگراویمتریک .........

2-9-2 روش مشعلی................................

2-9-3 خوردگی داغ ناشی از مخلوط سولفاتها و وانادتها

2-9-4 کنترل ناشی از سولفات و وانادات............

2-10 خوردگی ناشی از نمکهای دیگر .....................

2-10-1 تأثیر کلرید.............................

3-1 پوششهای محافظ در برابر خوردگی داغ................

3-2 تاریخچه بکارگیری پوشش های محافظ.............

3-2-1 پوشش های نفوذی...........................

3-2-2 پوششهای آلومینیدی ساده...................

3-2-3 پوششهای آلومینیدی اصلاح شده...............

3-3 تخریب پوششهای نفوذی.........................

3-3-1 تخریب پوششهای آلومینیدی ساده..............

3-3-2 تخریب پوششهای آلومینیدی اصلاح شده..........

4-1 مقدمه ای بر اکسیداسیون و سولفیداسیون ...........

4-2 محیطهای حاوی واکنشگرهای مخلوط.....................

4-3 تأثیر مراحل آغازین فرآیند اکسیداسیون بر روند کلی

4-4 تشکیل لایه اکسید روی آلیاژهای دوتایی ............

4-4-1 اکسیداسیون انتخابی یک عامل آلیاژی .......

4-4-2 تشکیل همزمان اکسیدهای عامل آلیاژی در پوسته بیرونی  

4-4-2-1 محلولهای جامد اکسید .....................

2-4-2-2 تشکیل متقابل اکسیدهای غیر محلول.........

4-4-3 رفتار اکسیداسیون آلیاژهای حاوی کرم، نیکل و کبالت  

4-4-3-1 فرایند اکسیداسیون آلیاژهایCo-Cr ........

4-4-3-2 فرایند اکسیداسیون آلیاژهای Ni-Cr .......

4-4-3-3 فرایند اکسیداسیون آلیاژهای Fe-Cr .......

4-5 مکانیزم اکسیداسیون آلیاژهای چند جزئی............

4-6 تأثیر بخار آب بر رفتار اکسیداسیون................

4-7 واکنشهای سولفیداسیون ...........................

4-7-1 سولفید آلیاژهای دوتاییNi-Cr ,Co-Cr ,Fe-Cr ....

4-7-1-1 مکانیزم سولفیداسیون آلیاژهای Co –Cr ....

4-7-1-2 مکانیزم سولفیداسیون آلیاژهای Ni-Cr ,Fe-Cr

4-7-1-3 تأثیر عنصر اضافی آلومینیوم بصورت عنصر سوم آلیاژی

4-7-1-3 تأثیر سولفیداسیون مقدماتی روی رفتار اسیداسیون بعدی  

4-8 روند سولفیداسیون دمای بالای فلزات در SO2+O2+SO2 ..

4-8-1 دیاگرام های پایداری فاز اکسیژن – گوگرد ..

4-8-2 خوردگی نیکل در SO2 .......................

4-8-2-1 مکانیزم واکنش در دماهای 500 و 600 درجه سانتی گراد   

4-8-2-2 مکانیزم واکنش در بالای دمای 600 درجه سانتیگراد   

4-8-2-3 وابستگی واکنش سیستم Ni-SO2 به دما ......

4-8-3 خوردگی نیکل در SO3+SO2+O2 ................

4-8-4 خوردگی کبالت در SO2+O2+SO2 ...............

4-8-5 خوردگی آهن در SO2+O2+SO2 .................

4-8-6 خوردگی منگنز در SO2 ......................

4-8-7 خوردگی کرم در SO2 ........................

4-8-8 تأثیرات پوسته های اکسید های تشکیل شده اولیه بر رفتار بعدی قطعه در اتمسفر گازهای محتوی سولفور ...................

4-8-8-1-نفوذ سولفور از میان پوسته های آلومینا(Al2 O3) و کرمیا (Cr2O3) ...............................................

4-8-9 مثالهایی از رفتار خوردگی درجه حرارت بالای آلیاژهای نیکل در محیط های حاویSO2+O2 , SO2 .............................

4-8-9-1 رفتار واکنش آلیاژ Cr % 20-Ni در SO2+O2+SO2   

 

 

152 ص فایل Word


دانلود با لینک مستقیم


دانلود تحقیق تولید انرژی با توربین های گازی

دانلود پاورپوینت بررسی انواع روشهای خنک کاری پره های توربین گازی

اختصاصی از هایدی دانلود پاورپوینت بررسی انواع روشهای خنک کاری پره های توربین گازی دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت بررسی انواع روشهای خنک کاری پره های توربین گازی


دانلود پاورپوینت بررسی انواع روشهای خنک کاری پره های توربین گازی
 از سیستم های خنک کاری به منظور بهینه سازی و افزایش راندمان استفاده می شود.

 با افزایش دمای گازهای احتراق ورودی به توربین  بازده چرخه توربین گاز افزایش می یابد .امروزه این دما در حدود1100 تا 1260 درجه سانتیگراد است.

 سازندگان توربین های  گازی تلاش می کنند تا بتوانند این دما را به 1700درجه برسانند و در آینده تا دماهای بالاتر  نیز مورد نظر است.

با توجه به اینکه افزایش دمای ورودی به توربین یک مزیت اجتناب ناپذیر است اما برای خنک کاری پره های توربین باید تمهیدات لازم اندیشیده شود.
در توربینهای قدیمی به دلیل پائین بودن دما نیازی به خنک سازی وجود نداشت
استفاده از دماهای بالا موجب بوجود آمدن تنشهای گرمایی در پره های متحرک و کاهش طول عمر پره می شود.
به طور کلی دمای سطح پره باید در کمتر از 900 درجه سانتیگراد باشد تا خوردگی پره از حد مجاز تجاوز نکند.
 خنک سازی پره با خالی کردن داخل آن و جاری کردن شاره خنک کننده از فضای خالی شده امکان پذیر می باشد(شکل 1)
پره توخالی سبک تر از پره تو پر بوده و عدد بیو در آن خیلی کوچکتر است و از این رو توزیع دما در آن نسبتا یکنواخت می باشد.

شاره های خنک کننده هوا و آب می باشند.
ازهوا تا دمای 1150 درجه سانتیگراد استفاده می شود.
از آب تا دمای 1315 درجه سانتیگراد استفاده می شود.
از سیستم ترکیبی مابین این دودما استفاده می شود.
از آب برای قسمتهای دما بالا (پره ثابت) ورودی از هوا برای مابقی پره ها استفاده می کنیم.

 شامل 21 اسلاید powerpoint


دانلود با لینک مستقیم


دانلود پاورپوینت بررسی انواع روشهای خنک کاری پره های توربین گازی

دانلود تحقیق تحلیل انرژی و اگزرژی سیکل توربین گازی با تزریق بخار

اختصاصی از هایدی دانلود تحقیق تحلیل انرژی و اگزرژی سیکل توربین گازی با تزریق بخار دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تحلیل انرژی و اگزرژی سیکل توربین گازی با تزریق بخار


دانلود تحقیق تحلیل انرژی و اگزرژی سیکل توربین گازی با تزریق بخار

استفاده از سیکل توربین گازی با تزریق بخار به دلیل مزایایی که در افزایش کار ویژه و بازده و کاهش آلاینده‌های زیست محیطی دارد، از دو دهه اخیر در سیستمهای تولید برق مورد توجه قرار گرفته است. در این تحقیق سیکل توربین گازی با تزریق بخار از نظر انرژی و اگزرژی مورد ارزیابی قرار گرفته و با محاسبه آهنگ بازگشت‌ناپذیری‌ها و موازنه اگزرژی اجزاء مختلف سیکل, تلفات و عوامل مؤثر بر نابودی اگزرژی و راه‌کارهای جبران آنها مورد تحلیل قرار می‌گیرد. نتایج نشان می‌دهند که کار ویژه خالص در این سیکل نسبت به سیکل ساده می‌تواند بین 5/66 تا 7/79 درصد و راندمان حرارتی نسبت به سیکل ساده از 8/6 تا 9/7 درصد افزایش می‌یابد. در شرایط کار ویژه ماکزیمم و بازده ماکزیمم اگزرژی تلف شده به وسیله گازهای خروجی در سیکل توربین گازی با تزریق بخار نسبت به سیکل ساده توربین گاز, حدود 61 تا 67 درصد کمتر است که این خود یکی از مزایای بزرگ سیکل توربین گازی با تزریق بخار به شمار می‌رود.

کلمات کلیدی: توربین گازی- تزریق بخار- بویلر بازیافت گرما- تحلیل اگزرژی

در نیروگاه‌های گازی به لحاظ بالا بودن دمای گازهای خروجی از توربین گاز و به دلیل اینکه این گازها حاوی انرژی قابل ملاحظه‌ای می‌باشند، لازم است که با استفاده از روشهایی از اتلاف انرژی این گازها جلوگیری شود. یکی از این روشها، تزریق بخار می‌باشد. در این روش با قرار دادن یک بویلر بازیافت گرما در مسیر گازهای خروجی از توربین، در نتیجه انتقال حرارت به آب، بخار تولید می‌گردد. سپس بخار تولید شده که دارای فشاری معادل فشار اتاق احتراق است و در حالت فوق گرم قرار دارد به اتاق احتراق تزریق می‌شود. با افزایش آهنگ جرمی و گرمای ویژه محصولات احتراق، کار توربین افزایش یافته و کار خالص سیکل زیادتر می‌گردد. ازدیاد کار ویژه و کاهش اتلاف حرارت سبب بهبود بازده می‌گردد. اساساً، سیکل توربین گاز با تزریق بخار شبیه یک سیکل ترکیبی عمل می‌کند که در آن بخار آب به جای آنکه در توربین بخار جداگانه منبسط گردد، به همراه محصولات احتراق در توربین  سیکل توربین گازی منبسط شده و تولید توان می‌نماید. علاوه بر اینها تزریق بخار یک روش کاملاً برگزیده برای کاهش آلاینده‌های زیست محیطی نظیر اکسیدهای نیتروژن می‌باشد. طرحواره سیکل توربین گازی با تزریق بخار در شکل (1) نشان داده شده است.

در سال 1988, در مورد استفاده از سیکل توربین گاز با تزریق بخار در سیستم تولید همزمان، مطالعه‌هایی بر پایه تحلیل‌‌های اقتصادی توسط Baken [1] انجام گرفت. نتایج حاصل از بهینه‌سازی نشان می‌دهند که به ازای مقدار معینی از انرژی حرارتی مورد نیاز, استفاده از سیکل تزریق بخار که دارای توان نامی سیکل توربین گازی ساده می‌باشد، مقرون به صرفه خواهد بود. در سال 1995، در تحقیقاتی که بوسیله Bolland [2] انجام شد، نتایج مفیدی در مورد استفاده از سیکل‌‌های مختلف توربین گازی از جمله سیکل ساده، سیکل تزریق بخار و سیکل ترکیبی به دست آمد. نتایج این بررسی که بر اساس آخرین پیشرفت تکنولوژی توربین‌‌های گازی صورت گرفت، نشان داد که در مورد سیستم‌‌های کوچک بازده سیکل تزریق بخار قابل مقایسه با سیکل ترکیبی می‌باشد. در سال 1998، Cerri [3] با بررسی‌‌های انجام داده و با انتخاب مقدار مناسب بخار تزریق، نشان داد که می‌توان راندمان حرارتی سیکل را به بیشتر از 40 تا 50 درصد و کار خروجی را بیشتر از 50 تا 80 درصد نسبت به سیکل ساده توربین گاز افزایش داد که البته این مقادیر وابسته به دمای حداکثر سیکل و نسبت فشار کمپرسور می‌باشد.

در بررسی عملکرد سیکل‌ها لازم است شرایط‌ کارکرد سیکل‌های واقعی در انجام تحلیل‌ها و محاسبات منظور ‌شود. اعمال این شرایط باعث افزایش دقت در پیش‌بینی عملکرد سیکلها می‌گردد. شرایطی که در تمامی تحلیل‌ها و محاسبات منظور شده است را در جدول (1) مشاهده می‌کنیم. لازم به ذکر است که در این تحقیق, خنک‌کاری پره‌های توربین در نظر گرفته شده و محاسبات به وسیله نرم‌افزار EES انجام گرفته است.

شامل 12 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق تحلیل انرژی و اگزرژی سیکل توربین گازی با تزریق بخار

دانلود تحقیق تاریخچه توربین گاز و موتور جت

اختصاصی از هایدی دانلود تحقیق تاریخچه توربین گاز و موتور جت دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تاریخچه توربین گاز و موتور جت


دانلود تحقیق تاریخچه توربین گاز و موتور جت

بصورت دسته بندی زمانی تاریخچه توربین گازی و موتور جت را میتوان بصورت زیر نشان داد
یکصدوپنجاه سال پیش از میلاد : الکساندریا توربین هوای داغ را برای به حرکت درآوردن اجسامی در جشنهای مذهبی ساخت
هزاروپانصدوده میلادی : لئوناردو داوینچی توربین هوای داغ را برای به حرکت در آوردن و چرخاندن گوشت برای بریان کردن آن استفاده کرد
هزاروهفتصدونود : جان باربر انگلیسی مشخصات توربین گازی را با ارائه دادن الگوی سیکل ترمو دینامیکی توصیف کرد و آنرا برای موتور جت پیشنهاد کرد
هزاروهشتصدوهفت : جورج کالی موتور هوای داغ با توربین نوع عکس العملی را اختراع کرد که این موتور نحوه کارش همانند توربین های گاز امروزی بود
هزاروهشتصدوهجده : جیمز ژول فیزیکدان انگلیسی تئوری سیکل توربین گازی را بررسی و ارائه داد که با نام سیکل ژول معروف است
هزاروهشتصدوبیست وچهار : کارنو مقدمات اولیه تئوری موتور جت (توربین گاز) را ارائه کرد
هزاروهشتصدوبیست و هفت : رابرت استرلینگ برای موتور هایی که در سیکل هوای داغ کار میکنند مبدل حرارتی را اختراع کرد
هزاروهشتصدوسی و هفت : برسون اولین  توربین گازی با کمپرسور چرخشی را طراحی کرد
هزاروهشتصدوچهل و شش : بوردن استفاده از کمپرسور و توربین چند مرحله ای را پیشنهاد کرد
هزاروهشتصدوهفتادودو : استالز اولین توربین گازی امروزی را طراحی کرد هزاروهشتصدوهشتادوچهار : چارلز پارسون طراحی توربین گازی را با جزییات بیشتری ارائه داد
هزارونهصدودو : موس دستگاه آزمایش توربین گازی را در دانشگاه کرنل نصب کرد
هزارونهصدوپنج : سوسیتی اولین توربین گازی را که 4 % بازدهی داشت را در پاریس راه اندازی کرد
هزارونهصدوهشت : هلزورس اولین توربین گازی را با حجم ثابت ساخت
هزارونهصدوبیست : شرکت تیسن توربین گازی هلزورس را به عنوان موتور قطار ایالتی بکار برد
هزارونهصدوسی : فرانک ویتل اولین طرح توربین گازی جت را ارائه داد

هزارونهصدوچهل : توربین گازی با سیکل بسته بکار گرفته شد
هزارونهصدو یک : هواپیما با موتور توربین گازی ساخته شده توسط فرانک ویتل به پرواز در آمد
هزارونهصدوچهل و هشت : توربین گازی با سیکل نیمه باز در سوییس آزمایش شد
هزارونهصدوپنجاه و شش : سیکل بسته با سوخت پودر زغال آزمایش شد
هزارونهصدوپنجاه ونه : رزمناو نیروی دریایی سلطنتی انگلیس با بکار گیری سیکل ترکیبی بخار و توربین گاز آزمایش شد
هزارونهصدوشصت : شرکت جنرال الکتریک واحد ترکیبی بخار و گاز را بکار گرفت هزارونهصدوشصت و یک : انگلیسی ها هاور کرافت با موتور توربین گاز را بکار بردند
هزارونهصدوشصت و دو : شبکه تولید برق انگلستان واحد گازی به ظرفیت 17.5 مگاوات را آزمایش کرد

 

 

 

 

 

شامل 19 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق تاریخچه توربین گاز و موتور جت

دانلود تحقیق توربین های گازی

اختصاصی از هایدی دانلود تحقیق توربین های گازی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق توربین های گازی


دانلود تحقیق توربین های گازی

1-1 تاریخچه توربین گاز
از حدود 70 سال قبل توربین های گازی جهت تولید برق مورد استفاده قرار می گرفته اند، اما در بیست سال اخیر تولید این نوع توربین ها بیست برابر افزایش یافته است.
اولین طرح توربین گازی مشابه توربین های گازی امروزی در سال 1791 به وسیله «جان پایر» پایه گذاری شد که پس از مطالعات زیادی بالاخره در اوایل قرن بیستم اولین توربین گازی که از یک توربین چند طبقه عکس العملی و یک کمپرسور محوری چندطبقه تشکیل شده بود، تولید گردید.
اولین دستگاه توربین گازی در سال 1933 در یک کارخانه فولادریزی در کشور آلمان مورد بهره برداری قرار گرفت و آخرین توربین گازی با قدرت 2/212 مگاوات در فرانسه نصب و مورد بهره برداری می گردد. [1]
در صنعت برق ایران اولین توربین گازی در سال 1343 در نیروگاه شهر فیروزه (طرشت) مورد استفاده قرار گرفته است که شامل دو دستگاه بوده و هر کدام 5/12 مگاوات قدرت داشته است. در حال حاضر کوچکترین توربین گازی موجود در ایران توربین گاز سیار «کاتلزبرگ» با قدرت اسمی یک مگاوات و بزرگترین آن توربین گازی 49-7 شرکت زیمنس با قدرت 150 مگاوات می باشد. [1]
1-2- نقش توربین گاز در صنعت برق
توربین های گاز جدا از تولید برق به خاطر خصوصیات ویژه ای که دارند می تواند در موارد دیگری مثل موتورهای جت در هواپیماها برای تأمین نیروی محرکه هواپیما و نیروی جلوبرندگی به کار رود یا مثلاً جهت به گردش درآوردن یک پمپ قوی به کار رود.
اما چون بحث ما پیرامون توربین های گازی است که در صنعت برق وجود دارد. لذا مطالب خود را بر اساس همین موضوع پیگیری می کنیم.
با توجه به آمار و ارقام مشخص می شود که میزان مصرف برق در ساعات مختلف شبانه روز متفاوت است مثلاً در بعضی از ساعات شبانه روز (فاصله ساعت 10:00 تا 12:00 صبح و از تاریک شدن هوا به مدت تقریباً دو ساعت در شب) مصرف برق خیلی زیاد است و به میزان حداکثر خود می رسد (پیک بار) و در بعضی ساعات مثل ساعات بین نیمه شب تا بامداد مصرف برق خیلی پایین است و در بقیه اوقات یک مقدار متعادل را دارد.
************************************************************
شکل (1-1) تغییرات بار به ازاء شبانه روز (منفی بار)
همانطوری که در شکل 1-1 دیده می شود [1] یک مقدار از بار مصرف تقریباً در تمام ساعات شبانه روز ثابت است که به آن بار پایه می گوییم و یک مقدار بار نیز تنها در ساعات محدودی از شبانه روز اتفاق می افتد و مقدار آن بیشتر از بار در بقیه ساعات شبانه روز می باشد. این بار را بار حداکثر یا پیک می گوییم. نوسانات بین بار پایه و بار پیک را نیز بنام بار متوسط یا میانی می گوییم و برای تأمین بار پایه به نوعی نیروگاه احتیاج داریم که مخارج جاری آن پایین باشد. این نیروگاه ها شامل نیروگاه های بخار (به خاطر سوخت ارزان- چون سوخت مصرفی آنها معمولاً سوخت های سنگین مثل ماژوت است) نیروگاه های هسته ای و نیروگاه های آبی می باشد. اما برای تأمین بار پیک به نوعی نیروگاه احتیاج داریم که مخارج نصب پایین و سرعت راه اندازی و باردهی بالا داشته باشد. [حتی اگر مخارج جاری آن بالا باشد و در رابطه با تأمین بار پیک توربین های گازی مطرح می شوند، زیرا خصوصیات تقاضا شده فوق را دارا می باشند.
توربین های بخار به خاطر آنکه برای راه اندازی و رسیدن به مرحله باردهی چندین ساعت وقت لازم دارند و استفاده از آنها به صورت رزرو به صرفه نیست در این مورد استفاده نمی شوند.
بار میانی نیز توسط ترکیبی از نیروگاه های مختلف که اقتصادی تر باشد، تأمین می شود. بنابراین یکی از بارزترین موارد استفاده توربین های گاز در صنعت برق، تأمین بار پیک توسط این واحدهاست البته در کشورهایی مثل ایران که مسأله سوخت حتی گاز و گازوئیل مسأله مهمی را ایجاد نمی کند از واحدهای گازی برای تأمین بار پایه نیز استفاده می شود.
از ویژگی های دیگر واحدهای گازی که با دیزل استارت می شود قادرند با استفاده از باتری ها موجود در باتری خانه که همواره شارژ کامل هستند بدون وابستگی به شبکه استارت شده و به مرحله باردهی برسند لذا از واحدهای گازی می توان برای مناطقی که به شبکه سراسری متصل نیستند و نیز برای شروع برقرارکردن شبکه پس از خاموشی کامل شبکه استفاده کرد. در بعضی از واحدهای گازی کلاچ مخصوص بین محور توربین و محور ژنراتور وجود دارد که می توان این دو محور را از هم جدا کند و در واحدهایی که به این نوع کلاچ مجهز هستند می توان در حالی که ژنراتور به شبکه متصل است با خاموش کردن توربین و باز شدن کلاچ موردنظر که با افت دور توربین نسبت به ژنراتور صورت می گیرد ژنراتور را به صورت موتور درآورد و به این وسیله عمل تنظیم ولتاژ شبکه را انجام داد. این کار معمولاً در شبهایی که بخاطر پایین بودن مصرف در شبکه ولتاژ بالا می رود انجام می شود به این نوع استفاده از ژنراتور اصطلاحاً کندانسور کردن گویند.
1-3-1- مزایای توربین گازی
الف) واحدهای گازی بخاطر جمع کوچک و ساده بودن نصب خیلی سریع نصب می شود.
ب) واحدهای گازی بعد از استارت، در عرض چند دقیقه (معمولاً کمتر از ده دقیقه) به مرحله بازدهی می رسند که در این زمان کوتاه، توربین های گازی را قادر ساخته است که برای منظورهای اضطراری و در مواقعی که ماکزیمم مصرف برق را در سیستم قدرت داریم مورد استفاده قرار گیرد. در ضمن تغییر بار (قدرت تولید) در این واحد، سریع صورت می گیرد.
ج) قیمت و هزینه نصب واحدهای گازی پایین است (حدود   واحدهای بخار برای قدرت برابر)
د) به علت سادگی ساختمان و کم بودن قسمت های کمکی و نوعی در توربین گاز بهره برداری از آن آسان می باشد. در ضمن در واحدهای گازی امکان کنترل و بهره برداری در محل و از راه دور وجود دارد.
هـ ) در توربین های گازی، امکان استفاده از سوخت های مختلف و تعویض نوع سوخت در حال کار واحد به هنگام باردهی، قدرت مانور خوبی به واحد می دهد.
1-3-2- معایب توربین گازی
الف) راندمان یا بازدهی واحدهای گازی به خاطر دفع مقدار زیادی انرژی، به صورت گرما از اگزوز، (برای یک واحد گازی با قدرت 25 مگاوات دمای خروجی اگزوز، بیش از Cْ500 می باشد) و تشعشع مقداری گرما از جدار اتاق احتراق، پایین تر می باشد (ماکزیمم تا حدود 27% برای سیکل ساده)
ب) چون در واحدهای گازی، معمولاً از گاز طبیعی یا سوخت های سبک استفاده می کنند، لذا مخارج جاری آنها بالا می باشد (به علت گرانی اینگونه سوختها)، ولی در عوض میزان آلودگی محیط زیست نسبت به سایر نیروگاه های حرارتی دیگر با قدرت مشابه کمتر است.

 

 

 

 

شامل 123 صفحه Word


دانلود با لینک مستقیم


دانلود تحقیق توربین های گازی