هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه کارشناسی چرم مصنوعی و تأثیر فرمولاسیون در خواص فیزیکی چرم

اختصاصی از هایدی پایان نامه کارشناسی چرم مصنوعی و تأثیر فرمولاسیون در خواص فیزیکی چرم دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی چرم مصنوعی و تأثیر فرمولاسیون در خواص فیزیکی چرم


پایان نامه کارشناسی چرم مصنوعی و تأثیر فرمولاسیون در خواص فیزیکی چرم

فرمت فایل: word

تعداد صفحه:88

دانشگاه آزاد اسلامی واحد شهر ری

پایان‌نامه کارشناسی رشته مهندسی نساجی (شیمی نساجی و علوم الیاف)

چرم مصنوعی و تأثیر فرمولاسیون در خواص فیزیکی چرم به انضمام تست کدر شدن- بخار گرفتگی (fogging) روی منسوجات و چرم

فهرست مطالب

مقدمه (چکیده) ۱
- فصل اول (مباحث نظری)
پلی‌وینیل کلراید (P.V.C) 6
مخلوط‌های PVC-NBR 10
مخلوط‌های PVC-ACRYLIC 16
مخلوط‌های PVC-ELATOMER 25
مخلوط‌های PVC-POLYALKENE 27
مخلوط‌های PVC-CPE, PVC-CSR 30
مخلوط‌های PVC-poly urethane 37
مخلوط‌های PVC-EVAC,PVC/EVAC-VC 39
مخلوط‌های PVC-ABS 43
مخلوط‌های رزین مهندسی و PVC
آلیاژ با PVC 48
آلیاژ با COPO 49
آلیاژ با PC 51
آلیاژ با POM 52
آلیاژ با PI 52
آلیاژ با PVP 54
- Reasons for benefits and problems of blending 55
- فصل دوم (مباحث عملی)
یک فوم از چه اجزائی تشکیل شده است؟ ۵۹
عناوین آزمایشات صورت گرفته روی فوم ۵۹
آزمایش اول (اگر افزایش مواد فوم‌از با پارامترهای فوم Dop= 65gr) 61
آزمایش دوم (اثر افزایش Dop بر پارامترهای فوم) ۶۲
آزمایش سوم (اثر افزایش مواد فوم‌از بر پارامترهای فوم Dop= 85 gr) 62
آزمایش چهارم (اثر افزایش کربنات کلسیم بر پارامترهای فوم) ۶۳
آزمایش پنجم (اثر افزایش ASUA بر پارامترهای فوم) ۶۴
فرمول ماده فوم‌از و درصد ترکیبات آن ۶۴
- فصل سوم (تست کدر شدن- بخارگرفتگی (fogging) روی منسوجات و چرم
موضوع و زمینه کاربرد ۶۶
مبنای آزمایش ۶۶
تعریف عبارات و علائم ۶۷
تجهیزات و شناساگرها ۶۷
آماده‌سازی نمونه‌ها ۷۲
روش انجام آزمایش ۷۳
تشریح نتایج ۷۹
گزارش آزمایش ۸۳

 

مقدمه:

همانطور که می‌دانیم چربهای مصنوعی برخلاف چرم‌های طبیعی که پس از دباغی کردن پوست گوسفند تهیه می‌گردند از مواد پلیمری که سنجش اعظم آن را پلی‌وینیل کلراید تشکیل می‌دهد تشکیل یافته‌اند.

پلی‌وینیل کلراید (P.V.C) در سال ۱۸۳۵ در یک تحقیق آزمایشگاهی شناخته شد. اما به دلیل اقتصادی یک قرن بود در دهه ۱۹۲۰ وقتی که صنعت پلاستیک پیشرفت کرد شناخته شد. با وجود این پلاستیک‌های با وزن مولکولی پائین باعث مهاجرت آنها به سطح و سپس تبخیر آنها می‌شد. این اتلاف خود باعث شکنندگی می‌شد که برای رفع این مشکل سطح P.V.C قالب‌ریزی شده را چرب می‌کند که بویی شبیه پلاستی سایزر (نرم کننده) داشت و باعث رونیامدن مشتری‌ها به آن می‌شد. ایجاد حالت پلاستیکی بوسیله مخلوط کردن P.V.C با مواد پلیمری به زودی معلوم کرد که بهترین پاسخ به این مشکل است.

مواد مخلوطی با P.V.C در دهه ۱۹۲۰ معرفی شدند. در سال ۱۹۲۸ اولین اختراعاتی که ثبت شد ماده ته‌نشین شده بوسیله I.G.Farbenindustrie و کربید و کربنهای شیمیایی برای مخلوط لاتکس PVC با پلی‌وینیل استات (PVAC) و پلی‌وینیل کلراید- CO- وینیل استات) PVCAC با ۸۰ تا ۹۵ درصد وزن VC بود. این مخلوط عایق رطوبتی به عنوان جانشین چرم استفاده می‌شد.

(Voss & Dickhansen, 1930, 1933, 1934, 1936, 1935) این اولین استفاده از پلیمر جهت سازگار کنندگی بود.

ماده اولیه لوله P.V.C را از موادی با نام تجاری Vinolit که محصول شرکت آلمان است تهیه می‌کنند (شرکت شاهین پلاستیک) سپس این پودر Vinolit را با روغنی به نام DOP که مخفف (دی اتیل هگزیل فتالات) است مخلوط می‌نمایند و سپس توسط پره‌هایی آنها را Mix می‌کنند. محصول در بشکه‌های بزرگ و به شکل خمیری مانند درمی‌آید در اینجا می‌توان براساس سفارش مشتری رنگ مورد دلخواه را اضافه نمود. پس از اضافه کردن محلول رنگی دوباره محلول را هم می‌زنند و سپس در بشکه‌هایی نگهداری و سریعاً (حدوداً تا نیم ساعت) استفاده می‌نمایند.

نحوه تولید چرم مصنوعی بدین شکل است که از کاغذی به نام کاغذ ماموت به عنوان زمینه‌ای که محلول فوق را روی آن قرار دهند استفاده می‌شود- علت نامگذاری این کاغذ بدین منظور است که کلمه ماموت به معنای فیل و به علت چین و چروکهای روی پوست فیل و تشابه آن با طرح‌های کاغذ فوق می‌باشد- کاغذ ماموت پس از خریداری از زیر غلتک‌هایی عبور کرده تا کاملاً صاف شود (چین و چروکهای فیلی روی کاغذ باقی است) سپس پس از عبور از چند غلتک و صاف شدن سطح کاغذ به زیر یک سینی که محلول رنگ و مواد پلیمری است هدایت می‌شود نحوه کار بدین شکل است که مواد مخلوطی پلیمری درون بشکه توسط دستگاه مکش (Suction) کشیده و روی این سینی روان می‌شود. سپس بوسیله یک تیغه در پشت این سینی مواد پلیمری به صورت یک لایه روی کاغذ ماموت پهن می‌گردد (کاغذ ماموت از زیر این سینی عبور می‌کند و سینی دارای سوراخ‌هایی برای عبور مواد پلیمری و انتقال آن روی کاغذ می‌باشد.)

پس از عبور از این مرحله یک لایه مواد پلیمری روی کاغذ روان شده که وارد یک دستگاه پخت هیتر (استنتر) می‌شود دمای این هیتر حدوداً ۱۷۰ درجه سانتیگراد است که توسط روغن داغ می‌شود این استنتر دارای ۸ شبکه و ۲ Zoon تنظیم می‌باشد.

پس از عبور از استنتر دوم یک لایه دیگر مواد پلیمری به مواد قبلی اضافه و وارد هیتر دوم می‌شود در اینجا هم این هیتر دارای ۸ شبکه و ۲ Zoon تنظیم است و نهایتاًدر مرحله سوم براساس سفارش مشتری می‌تواند یک لایه پارچه تریکو نیز به پشت چرم اضافه شده و لایه سوم پلیمر به مواد قبلی اضافه ‌شوند- و در هیتر آخر که دارای ۲۰ شبکه و ۴ Zoon و شیر تنظیم است می‌شود- سپس چرم پس از عبور از هیتر تثبیت انتهایی خارج و بوسیله غلتک Calender خنک می‌شود. در انتهای کار یک غلتک جدا کننده برای جدا کردن کاغذ ماموت و چرم تشکیل شده وجود دارد که طرحهای موجود در کاغذ ماموت را به پشت کار درحقیقت روی کار ما در آینده خواهد بود انتقال داده است و ظاهری زیبا و مشابه چرم طبیعی را به چرم خواهد داد.

همانطور که قبلاً گفتم در زمان تهیه خمیر پلیمری از رنگ براساس سفارش مشتری استفاده که این همان رنگ‌های چاپی بوده و معمولاً از حلالهایی مثل Mek که عبارت است (Methil Ethil Keton) وسیکوهگزانون و تولوئن استفاده می‌شود.

برای فشار نیاوردن رولها از عصایی استفاده شده تا رولها روی یکدیگر فشار نیاورند و از انتها، رولها جمع و به سالن کنترل کیفی برای انجام آزمایشات ارسال می‌گردند.

حال به منظور کار عملی کاربردی موارد ذیل پیشنهاد می‌گردد:

۱-   تأثیر افزایش مواد فوم‌زا بر پارامترهای فوم.

۲-   تأثیر افزایش DOP (نرم کننده) بر پارامترهای فوم.

۳-   تأثیر افزایش کربنات کلسیم بر پارامترهای فوم.

۴-   تأثیر افزایش ASUA بر پارامترهای فوم.

 

Poly vinyl chloride

پلی‌وینیل کلراید (PVC) در سال ۱۸۳۵ در یک تحقیق آزمایشگاهی شناخته شد. اما به دلایل اقتصادی یک قرن بعد در دهه ۱۹۲۰ وقتی که صنعت پلاستیک پیشرفت کرد شناخته شد. با وجود این پلاستیک‌های با وزن مولکولی پایین، باعث مهاجرت آنها به سطح و سپس تبخیر آنها می‌شد. این اتلاف خود باعث شکنندگی می‌شد که برای رفع این مشکل سطح PVC قالب‌ریزی شده را چرب می‌کردند که بویی شبیه پلاستی سایزر (نرم کننده) داشت و باعث رو نیاوردن مشتریها به آن می‌شد. ایجاد حالت پلاستیکی بوسیله مخلوط کردن PVC با مواد پلیمری به زودی معلوم کرد که بهترین پاسخ به این مشکل است.

مواد مخلوطی با PVC در دهه ۱۹۲۰ معرفی شدند. در سال ۱۹۲۸، اولین اختراعاتی که ثبت شد ماده ته‌نشین شده بوسیله I.G.Farbenindustrie وکربید و کربنهای شیمیایی برای مخلوط لاتکس PVC با پلی‌وینیل استات (PVAC) و پلی (وینیل کلراید- CO- وینیل استات) PVCAC با ۸۰ تا ۹۵ درصد وزنی VC بود. این مخلوط عایق رطوبتی به عنوان جانشین چرم استفاده می‌شد. (Voss & Dickhanser, 1930, 1933, 1934, 1936, 1935). این اولین استفاده از کوپلیمر جهت سازگار کنندگی بود.

با وجود این مخلوطهای مقدم بر این برای PVC، نیتریل را بر (NBR) بودند. این سیستمها بوسیله یکی از ۳ روش زیر آماده می‌شد:

۱-   تکنولوژی آسیاب لاستیک (rubber milling)

2-   مخلوط لاتکس که با ترکیب کردن محلول آبی سوسپانسیون PVC با یکی از الاستومرها بدست آمده.

۳-  مخلوط کردن پودر خشک با استفاده از پودرهای کوچک و ظریف که از خشک کردن لاتیس (Latice) بدست می‌آید.

بعد از کشف ABS در سال ۱۹۴۶، این ترپلیمر به عنوان بهبود دهنده مقاومت در برابر ضربه برای PVC بکار گرفته شد. در طول سالهای گذشته PVC به طور پیوسته با بهبود دهنده مقاومت در برابر ضربه مخلوط شده است. در سال ۱۹۵۶ با «متیل متاکریلات- بوتادی‌ان- استیرن» (MBS) و «کلرینیتد پلی اتیلن» (CPE) و یک سال بعد با «کلروسولفونیتو پلی اتیلن» (CSR)، در سال ۱۹۵۹ با «پلی یورتان خطی» (TPU)، در سال ۱۹۶۷ با «ترپلیمر اتیلن کلرینه شده»، پلیمر دی‌ان «ethylene- propylene diene terpolymer chlorinated» و سپس با «پلی‌سیلوکسان» و بهبود دهنده‌های مقاومت در برابر ضربه به آکریلیک و غیر مخلوط شده است. در دهه ۱۹۶۰ مخلوط کننده‌های خشک با تنش برشی بالا و شبیه مخلوط کننده‌های پودری برای ترکیب کردن با PVC به عنوان تکنولوژی برتر شناخته شد.

بعد از سالها، چندین نوع از اصلاح کننده‌های پلیمری به طور اختصاصی برای بهبود خواص PVC ارائه شد (Lutz & Dandelberger 1992- Asayeta (1992)) بعضی از اینها به صورت امولسیونی پلیمریزه شده بودند، مخلوط لاتکس آغازگر این روش می‌باشد. در طول دهه ۱۹۳۰ I.G.Farbenindustrie از یک سوی اختراعات ثبت شده به دست آمد که براساس پلیمریزاسیون در حالت امولسیونی یا کوپلیمریزاسیون وینیلی و مونومر آکریلیک بود مانند: متیل و اتیل آکریلات و با آکریلونیتریل، وینیل استات و کلرواستات، آکریلیک اسید، آکریلیک استرها، آکریلونیتریل و استیون یا وینیل کلراید، وینیل استات، استیون، آکریلونیتریل و آکریلیک استرها. ابتدا به صورت امولسیونی مخلوط می‌شدند سپس بوسیله روش sprag- drying مخلوط خشک می‌شوند و سپس عملیات بعدی روی آن انجام می‌گرفت. این روش طبیعی برای محدوده گسترده‌ای از خواص رزین‌ها و همچنین روش ارزشیابی ساده برای قابلیتهای آنها، استفاده می‌شد. مخلوط لاتکس هنوز هم روش ارجح برای بدست آوردن فرمول رنگ‌ها، چسب‌ها، پلاستی‌سولها، ارگانوسولها (organosols & plastisols) و … می‌باشد. پیشرفت در shawinigan chemicals، با بدست آوردن تکنولوژی رآکتور حلقه بسته (loop- reactor) با بازده بالا برای پلیمریزاسیون یا کوپلیمریزاسیون مونومرهای وینیل، آکریلیک و آلکنیک، ایجاد شد که در زمان ما هم مخلوط لاتکس استفاده می‌شود.

در حال حاضر، مخلوط کردن در حالت مذاب به عنوان روش اصلی مخلوط PVC مطرح است. با این حال این روش از تکنولوژی ساده‌ای برخوردار نیست
(This is far from Simple technology). در ابتدا نیاز داریم که شناخت کاملی از مشکل پایداری حرارتی داشته باشیم. این محدودیت باعث می‌شود که دمای عملیاتی کمتر از  باشد (پایداری فرمولها) بعلاوه ذوب PVC به طور یکنواخت نیست. در طول پلیمریزاسیون امولسیونی یا سوسپانسیونی ذرات PVC به صورت چند مرحله‌ای رشد می‌کنند. ساختار رشد ابتدایی، بسیار شبیه جزئی از کریستال زنجیر شکل سینویو تاکتیک (یک در میان منظم) می‌باشد که اگر در این حالت بماند، دمای ذوب در حدود  می‌باشد. با این نتیجه، جریان مخلوطهای PVC (مخصوصاً فرمولهای سخت و محکم، باید با استفاده از مدل سوسپانسیونی تفسیر شود (utracki 1973b, 1974, 1985b) ترکیب و عمل مخلوطهای PVC نیاز به کنترل دقیق دما و زمینه‌های استرس دارد. تفاوت در حالتهای عمل، تفاوت در مراحل شکستن زنجیره‌های رشد یافته PVC را نتیجه می‌دهد. که این تفاوت در حالتهای عمل، در نتیجه تفاوت در شکل مخلوط کردن و نحوه اجرای آن می‌باشد. این مشاهدات اشاره بر این دارد که ترکیب‌پذیری PVC فقط بر قسمتی از پلیمر تأثیر دارد. حتی در بعضی از سیستمهای آمیز‌ش‌پذیر مانند PVC بی‌نظم (آمورف) با «پلی‌متیل متاکریلات» NMR. (PMMA) جزئی نشان می‌دهد که آن سیستم در رزلوشن یا محدوده nm 20 هموژن است ولی در nm 2 غیرهموژن می‌باشد. (Albert 1985, Mcbriery & Packer 1993).

برای مخلوط‌های در حالت مذاب دو پلیمر شروع در بهترین درجه از پخش ماکرومولکولها اهمیت دارد. این مورد اشاره بر این دارد که گرید امولسیون PVC ارجح می‌باشد. البته پلیمرهای امولسیونی به صورت زننده‌ای کثیف می‌باشند. آنها شامل مقدار زیادی از آلودگیها مثل پس مانده‌های امولسیفایر، آغازگرها و مواد بافری و … می‌باشند. این آلودگی‌ها مناسب برای کاربردهای معین نیستند یا نیاز به پایدار کننده‌های زیادی دارند. بعلاوه تغذیه دستگاه خشک‌کن به شکل ریسندگی (spin- dried) بوسیله پوردهای کوچک و ظریف PVC برای انجام عملیات ماشین، اکسترودر یا میکسر، کار پرزحمتی است. مخلوط کردن تحت تنش برشی زیاد و در حالت خشک ممکن است عمل پر هزینه‌ای باشد، اما این تنها راه حل می‌باشد. بنابراین، بسته به مورد مصرف حالت PVC سوسپانسیونی ارجح است.

در آغاز سال ۱۹۷۱ به تحقیق برای بهبود حالت PVC بوسیله دانش مهندسی منجر به ساخت پلیمرهایی به نامهای PBT, PI, POM, PC, PET، یا کوپلیمر (PC-PSF) PC- Polysulfone شده است. شصت و پنج سال بعد از اولین ثبت اختراع درباره آلیاژهای جدید PVC اختراعات ثبت شده فعلی بر ترکیب با Polyamides, Carboxylated NBR، سیلیکون متصل شده به صورت عرضی و آکریلیک رابرها، یا با بلوک‌های کوپلیمر maleimide- base استوار است.

مخلوط PVC- NBR:

بعضی از اولین مخلوطها با روشهایی که مورد قبول صنعت لاستیک بود، تهیه می‌شد مانند آسیاب و اکسترود. مخلوط کردن‌های مکانیکی پودرهای لاتکس خشک در دهه ۱۹۳۰ معرفی شد. در سال ۱۹۳۶ Schmidt, Fikentscher اختراعی به ثبت رساندند مبنی بر مخلوط PVC با بهبود دهنده مقاومت در برابر ضربه آکریلیک برای استفاده در پوشش کابل. بعد از مدت کمی از اختراع نیتریل رابر (NBR) Ernest Badum که در Bergisch- Gladbach کار می‌کرد کشف کرد که آسیاب آن با ۵۰-۱۰% وزنی PVC موادی با فرآیندپذیری قابل قبول برای عایق کردن کابل بدست می‌دهد که دارای مقاومت عالی در برابر ازن بود (Badum 1942). مخلوط در سال ۱۹۳۶ به طور عمومی رواج پیدا کرد. این مخلوط‌های P.V.C یکی از اصلاح کننده‌های تماس اکریلیکی بود و مابقی آن NBR بود که اولین مخلوطهای ترموپلاستیکی رواج یافته در جهان مدرن بود. هفت سال بعد اختراعی بوسیله B.F.G.OODRICH ثبت شد از این قرار که PVC با مخلوط کردن مکانیکی با ۹۰-۵۰% وزنی NBR مواد لاستیکی تولید می‌کند که عایق کابل بوده و مقاوم در برابر ازن می‌باشد. در سال ۱۹۴۷ این آلیاژها فرآیندپذیری خوب و مقاومت عالی در برابر ازن داشت.


دانلود با لینک مستقیم


پایان نامه کارشناسی چرم مصنوعی و تأثیر فرمولاسیون در خواص فیزیکی چرم

پایان نامه ارشد مهندسی مکانیک (طراحی کاربردی) - مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی - با فرمت word

اختصاصی از هایدی پایان نامه ارشد مهندسی مکانیک (طراحی کاربردی) - مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی - با فرمت word دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارشد مهندسی مکانیک (طراحی کاربردی) - مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی - با فرمت word


پایان نامه ارشد مهندسی مکانیک (طراحی کاربردی) - مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی - با فرمت word

چکیده:

 

از آنجائیکه شرکت های بزرگ در رشته نانو فناوری  مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و  محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند  بیشتر توسعه یافته اند.

پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.

در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه  مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:

  1. مدل انرژی- معادل
  2. مدل اجزاء محدود بوسیله نرم افزار ANSYS
  3. مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB

مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ  در جهت های محوری و محیطی بدست آمده است.

در  مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی،  نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.

در  مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.

اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه  مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی  تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله  افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.

نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.

فهرست مطالب

عنوان                                                                                                             صفحه

 

فهرست علائم  ر

فهرست جداول  ز

فهرست اشکال  س

 

چکیده 1

 

فصل اول 

مقدمه نانو  3

1-1 مقدمه 4

   1-1-1 فناوری نانو  4

1-2 معرفی نانولوله‌های کربنی  5

   1-2-1 ساختار نانو لوله‌های کربنی  5

   1-2-2 کشف نانولوله 7

1-3 تاریخچه 10

 

فصل دوم 

خواص و کاربردهای نانو لوله های کربنی   14

2-1 مقدمه 15

2-2 انواع نانولوله‌های کربنی  16

   2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT) 16

   2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT) 19

2-3 مشخصات ساختاری نانو لوله های کربنی  21

   2-3-1 ساختار یک نانو لوله تک دیواره 21

   2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 24

2-4 خواص نانو لوله های کربنی  25

   2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن  29

       2-4-1-1 مدول الاستیسیته 29

       2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک    33

       2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها 36

2-5 کاربردهای نانو فناوری   39

   2-5-1 کاربردهای نانولوله‌های کربنی  40

       2-5-1-1 کاربرد در ساختار مواد  41

       2-5-1-2 کاربردهای الکتریکی و مغناطیسی  43

       2-5-1-3 کاربردهای شیمیایی  46

       2-5-1-4 کاربردهای مکانیکی  47

 

فصل سوم 

روش های سنتز نانو لوله های کربنی 55

3-1 فرایندهای تولید نانولوله های کربنی  56

   3-1-1 تخلیه از قوس الکتریکی  56

   3-1-2 تبخیر/ سایش لیزری   58

   3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD) 59

   3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 61

   3-1-5 رشد فاز  بخار  62

   3-1-6 الکترولیز  62

   3-1-7 سنتز شعله 63

   3-1-8 خالص سازی نانولوله های کربنی  63

3-2 تجهیزات   64

   3-2-1 میکروسکوپ های الکترونی  66

   3-2-2 میکروسکوپ الکترونی عبوری (TEM) 67

   3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM) 68

   3-2-4 میکروسکوپ های پروب پیمایشگر (SPM) 70

       3-2-4-1 میکروسکوپ های نیروی اتمی (AFM) 70

       3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM) 71

 

فصل چهارم 

شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته 73

4-1 مقدمه 74

4-2 مواد در مقیاس نانو  75

   4-2-1 مواد محاسباتی  75

   4-2-2 مواد نانوساختار  76

4-3 مبانی تئوری تحلیل مواد در مقیاس نانو  77

   4-3-1 چارچوب های تئوری در تحلیل مواد  77

       4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد  77

4-4 روش های شبیه سازی   79

   4-4-1 روش دینامیک مولکولی  79

   4-4-2 روش مونت کارلو  80

   4-4-3 روش محیط پیوسته 80

   4-4-4 مکانیک میکرو  81

   4-4-5 روش المان محدود (FEM) 81

   4-4-6 محیط پیوسته مؤثر  81

4-5 روش های مدلسازی نانو لوله های کربنی  83

   4-5-1 مدلهای مولکولی  83

       4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی) 83

       4-5-1-2 روش اب انیشو  86

       4-5-1-3 روش تایت باندینگ    86

       4-5-1-4 محدودیت های مدل های مولکولی  87

   4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها 87

       4-5-2-1 مدل یاکوبسون  88

       4-5-2-2 مدل کوشی بورن  89

       4-5-2-3 مدل خرپایی  89

       4-5-2-4 مدل  قاب فضایی  92

4-6 محدوده کاربرد مدل محیط پیوسته 95

   4-6-1 کاربرد مدل پوسته پیوسته 97

   4-6-2 اثرات سازه نانولوله بر روی تغییر شکل  97

   4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله 98

   4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله 99

   4-6-5 محدودیتهای مدل پوسته پیوسته 99

       4-6-5-1 محدودیت تعاریف در پوسته پیوسته 99

       4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته 99

   4-6-6 کاربرد مدل تیر پیوسته   100

 

فصل پنجم 

مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102

5-1 مقدمه 103

5-2 نیرو در دینامیک مولکولی  104

   5-2-1 نیروهای بین اتمی  104

       5-2-1-1 پتانسیلهای جفتی  105

       5-2-1-2 پتانسیلهای چندتایی  109

   5-2-2 میدانهای خارجی نیرو  111

5-3 بررسی مدل های محیط پیوسته گذشته 111

5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی  113

   5-4-1 مدل انرژی- معادل  114

       5-4-1-1 خصوصیات  محوری نانولوله های کربنی تک دیواره 115

       5-4-1-2 خصوصیات  محیطی نانولوله های کربنی تک دیواره 124

   5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS  131

       5-4-2-1 تکنیک عددی بر اساس المان محدود  131

       5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS  141

   5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB   155

       5-4-3-1 مقدمه 155

       5-4-3-2 ماتریس الاستیسیته 157

       5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی  158

       5-4-3-4 تعیین و نگاشت المان  158

       5-4-3-5 ماتریس کرنش-جابجائی  161

       5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای   162

       5-4-3-7 ماتریس سختی برای یک حلقه کربن  163

       5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه 167

       5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه 168

 

فصل ششم 

نتایج   171

6-1 نتایج حاصل از مدل انرژی-معادل  172

   6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره 173

   6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره 176

6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS  181

   6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [ 182

   6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192

6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB   196

 

فصل هفتم 

نتیجه گیری و پیشنهادات 203

7-1 نتیجه گیری   204

7-2 پیشنهادات   206

 

فهرست مراجع 207


دانلود با لینک مستقیم


پایان نامه ارشد مهندسی مکانیک (طراحی کاربردی) - مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی - با فرمت word

دانلودمقاله خواص اپتیکی مواد

اختصاصی از هایدی دانلودمقاله خواص اپتیکی مواد دانلود با لینک مستقیم و پر سرعت .

مقدمه:
بمنظور آشنائی با خواص اپتیکی مواد (رسانا و غیر رسانا) میبایست میدان الکتریکی E و میدان مغناطیسی B را در مواد بررسی نمود یا در واقع به عنوان محیط موجبری که انرژی یا موجی را انتقال میدهد مورد کنکاش قرار داد. لذا می بایستی که بحث الکترومغناطیسی را بعنوان زیربنا و ساختار لایه های اپتیکی مورد استفاده قرار داد از آنجاییکه عنوان پروژه طراحی فیلترهای نوری میباشد لذا ما فرض میگیریم که خواننده آشنا به مطائل الکترومغناطیسی است ما صرفاً به اعمال شرایط مرزی در یک مرز یا مرز دو محیط بسنده می نمائیم. طراحی فیلترهای منوری بمنظور بازتاب و یا عبور طول موج های خاص و یا باند خاص از طول موجها طراحی میگردد که میزان بازتاب و عبور آن برای طراح بعنوان کیک پارامتر قابل تغییر مطرح می باشد و در واقع میزان بازتاب و عبور را در محدوده خاصی که مورد مظر است اتفزایش و یا کاهش میدهد و یا پالایش طول موجها را با بالا بردن میزان عبور یک طول موج و یا یک محدوده طول موجها و کاهش عبور دیگر طول موجها بوسیله بازتاب یا جذب را انجام میدهد که همه اینها در طراحی فیلتر عملی میگردد.
نیاز و کاربرد به لاسه نشانی و یا طراحی فیلترهای نوری برای آینه های گرمایی (بازتابنده های گرمایی) و آینه های سرد، (که آینه های گرمایی فروسرخ را بازتاب و آینه های سرد فروسرح را عبور میدهند و در نورافکنها استفاده میشود).
آینه های دوررنگی (شامل پالایه های نوارگذاری که بررخهای منشوری لایه نشانی شده تا نور را در دوربینهای رنگی به کانالهای قرمز، سبز و آبی تقسیم کند) آینه های لیزر با بازتاب بالا و یا در انترفرومترهای فابری پرو، مایکسون، لنزهای دوربین های عکاسی، نظامی، تلسکوپها، دوربین های نظامی دید در شب، هدایتگر موشک و ... میباشد.
در این پروژه تکیه بر فیلترهای ضد بازتاب و تا حدی محدود به آینه ها نیز اشاره می نمائیم و ضمناً تلاش بر این بوده که با دستیابی به متد طراحی و محاسبات آن به قدرت طراحی فیلتر توسط کامپیوتر دست یابیم که به این منظور یک سری برنامه هائی در جهت طراحی کارائی فیلترها نوشته شد که نیاز به گسترش خیلی بیشتری دارند بهر حال برای این پروژه بالغ بر 200 صفحه ترجمه و مطالعه شده و نیز بالغ بر 100 ساعت کار با کامپیوتر برای دستیابی به بهترین طراحی ها و برنامه نویسی انجام گردیده است.
امیدوارم این مجموعه در هرچه آشنا شدن به فیلترهای مختلف با محاسبات و طراحی آنها و کارهای عملی انجام شده نقطه شروعی در جهت طراحی فیلتر در صنعت و ... عملی شده باشد.

مرز:
فیلترهای نازک معمولاً شامل یک تعدادی مرز بین لایه های همگن هستند و خوبست بدانیم که این مرزها چه اثری روی موج فرودی که ما می خواهیم محاسبه کنیم خواهند گذاشت یک تک مرز ساده ترین حالت میباشد. ابتدا فرض می گیریم جذب در لایه ناچیز و صفر باشد و یک موج هارمونیک پلاریزه تخت را برای موج فرودی درنظر گرفته ایم هنگامی که یک موج به یک مرز بین دو محیط برخورد می کند یک قسمت از آن بازتاب و یک قسمت آن عبور می کند شکل همه آنها بصورت eiwt میباشد منتهی یک اخلاف فاز از این قسمت ناشی میشود که به میزات ضخامت محیط عبوری دارد. ضمناً میزان دامنه عبوری نیز تغییر می نماید.
میدانیم که میدان الکتریکی مماسی و میدان مغناطیسی مماسی موج فرودی در عبور از مرز در محیط ÷یوسته است. (محیط دی الکتریک درنظر گرفته شده است) با توجه به شکل و با توجه به شرایط مرزی میدانهای E و B را در دو طرف مرز میتوان با معادلات زیر نوشت:

که در اینجا میدان E فرودی اولیه
که در اینجا میدان E بازتابیده از مرز اول a
میدان E عبوری از مرز اول a
میدان E بازتابیده از مرز دوم b
میدان E عبوری از مرز دوم b
حاصل جمع تمام میدانهای E که بطرق فصل مشترک a فرود میآیند
حاصل جمع تمام میدانهای E که بطرق فصل مشترک b فرود میآیند
برای میدان مغناطیسی هم داریم:

بکمک عبارت زیر

مقادیر و را بر حسب میدان E می نویسیم:

که و و را اینگونه تعریف می کنیم:

و نور با یکبار ÷یمودن لایه اختلاف فازی معادل

را ÷یدا می کند که nt ضخامت ا÷تیکی و t ضخامت حقیقی می باشد و n ضریب شکست آن است.
و بعد از جایگذاری در معادله شرایط مرزی به معادلات زیر دست می یابیم.

و از آنجا داریم:

که ماتریس فوق را ناتریس انتقال گویند و این ماتریس میدان الکتریکی و مغناطیسی در سوی دیگر مرز را بما میدهد. این ماتریس را میتوان برای هر لایه نوشت که ضخامت فازی آن از ضخامت فیزیکی آن یعنی t ناشی می شود.

اگر چند لایه داشته باشیم برای هر لایه یک ماتریس انتقال میتوان نوشت که اگر بخواهیم میدان را در لایه لازم بدانیم از شکل زیر استفاده میکنیم.

و میتوان ماتریس انتقال کل را حاصلضرب تمام ماتریس انتقال تک تک لایه ها دانست.

با این تعریف و مراجعه به شرایط مرزی میتوان
به جای معادلش یعنی
به جای معادلش یعنی
به جای معادلش یعنی
به جای معادلش یعنی
اندیس s برای ÷ایه که بصورت Substrate نوشته میشود بکار میرود.

و می توان با تقسیم کردن طرفین بر بصورت

نوشت با استفاده از معادلات اخیر می توان ضرائب بازتاب و عبور را بصورت زیر تعریف نمائیم:
ضریب عبور، ضریب بازتاب
و شکل کلی ضرائب بازتاب و عبور برای هر چند لایه بصورت زیر می باشد:
ضریب بازتاب
ضریب عبور
و شکل ساده آن در فرود عمود بشکل زیر می باشد که در آنجا n0 ضریب شکست محیط فرود n1 ضریب شکست لایه و ns ضریب شکست پایه می باشد.


که میزان عبور از رابطه
که میزان بازتاب از رابطه
بدست می آید برای اینکه برای نور پلاریزه E1 و E11 یعنی برای نوری که میدان E آن عمود بر صفحه تابش می باشد و میدان الکتریکی که موازی صفحه تابش می باشد مقدار فرق می کند در واقع برای نور S پلاریزه و P پلاریزه بصورت زیر می باشد.
برای E1 عمود بر صفحه تابش
برای E11 با صفحه تابش
لازم بذکر است برای فرود عمودی که E1 و E11 متمایز نیستند عبارتها معادل اند زیرا می شود ولی در مورد فرود مایل نتایج برای هر قطبیدگی باید محاسبه شود. برای مثال بازتاب بصورت زیر بدست می آید:

ضخامت:
ضخامت عامل موثری در ایجاد اختلاف فاز می باشد لذا هنگامی که ضخامت تغییر می کند اختلاف فاز ایجاد شده باعث کاهش یا افزایش بازتاب می شود. میزان اختلاف فاز از رابطه زیر بدست می آید.
که در رابطه روبرو k عدد موج و اختلاف راه نوری می باشد.
= اختلاف راه نوری = و
برای اینکه ما یک اختلاف فاز ایجاد کنیم تا در یک رفت و برگشت نور در یک لایه اختلاف فاز با نور فرودی ایجاد شود بایستی در فرمول قرار داده تا مقدار ضخامت را بدست آوریم:
در فرود عمود می باشد
و مقدار nt ضخامت اپتیکی بدست آمده از فرمول روبرو مقدار بدست می آید.
که این مقدار ضخامت برای ایجاد اختلاف فاز لازم است و مقدار فیزیکی ضخامت لایه از رابطه زیر بدست می آید:

در شکل روبرو برای اینکه نور فرودی با بازتابی، o180 اختلاف فاز داشته باشد بایستی مقدار ضخامت اپتیکی لایه باید در نظر گرفته شود.
علت اینکه ما اختلاف فاز بین نور رودی و بازتابی ایجاد نمائیم بعلت این است که بتوانیم با ناهمسازی بین موج فرودی و بازتابی باعث عدم بازتاب در سطحی شده و در نتیجه عبور را افزایش دهیم و اگر مایل به ساخت آینه باشیم می بایست بین نور فرودی و بازتابی همسازی ایجاد کرده و با هم فاز کردن آنها باعث شویم عبور کم شده و نور فرودی با همان دامنه و فاز در سطح اول بازتاب شده در اینصورت بازتاب افزایش یابد که در اینجا با در نظر گرفتن اختلاف فاز 0 یا 2 می توان مقدار ضخامت اپتیکی را بدست آورد البته برای 2 بار رفت و برگشت نور بایستی مضربی از باشد که در نتیجه فقط برای یکبار رفت مقدار nt برابر یا مضاربی از بدست خواهد آمد.
تک لایه ای ضد بازتاب:
برای اینکه یک ضد بازتاب یا کاهنده بازتاب تک لایه داشته باشیم بایستی با در نظر گرفتن ضخامت که اختلاف فاز ایجاد می کند و در یک رفت و برگشت o180 اختلاف فاز با نور فرودی (اولیه) ایجاد می کند استفاده کنیم و با استفاده از این شرایط که بازتاب سطح اول را با بازتاب سطح دوم برابر قرار دهیم می توان مقدار اندیس یا ضریب شکست لایه را بدست آورد. با استفاده از فرمولهای فرنل یا همان ضرایب بازتاب و عبور می توان اینگونه نوشت:


که ضریب شکست پایه می باشد و این شرط برای مینیمم بازتاب یا بازتاب صفر لازم است. بعنوان مثال اگر شما یک تک لایه ربع موجی را بخواهید بر روی یک پایه شیشه ای با ضریب شکست 52/1 دور محیط هوا با اندیس 0/1 انتخاب نمائید بایستی لایه شما با استفاده از فرمول فوق مقدار آن از رابطه زیر بدست خواهد آمد:


البته ماده ای با ضریب شکست 23/1 در عناصر موجود یافت نمی شود و تنها ضرائب شکست 35/1 و 38/1 در دسترس می باشد که متعلق به کریولیت و می باشد.
می توان پایه را با ضریب بالا مثل ژرمانیم که حدود 0/4 است انتخاب نمود که در این صورت با استفاده از فرمول مقدار آن بدست می آید:

که می توان بعنوان تک لایه ای با ضریب شکست 0/2 بر روی پایه ژرمانیمی نشاند.
منحنی های رسم شده توسط کامپیوتر این دو نوع تک لایه ای بر روی پایه با ضریب کم و بر روی پایه با ضریب زیاد ضمیمه می باشد.
ماتریس انتقال یک تک لایه ای بشکل زیر برای آن نوشته می شود.

که در فرود عمود
البته می توان ضخامت را طوری تغییر داد که میزان درصد بازتاب یا عبور برای ما محاسبه شده باشد بطوری که مینیمم در نقطه مورد نظر نباشد و درصدی بازتاب داشته باشد که صرفاً این امر با تغییر مقدار ضخامت قابل انجام است. پوشش با ضخامت اپتیکی در طول موج 5500 یا nm 550 - بیشترین پهنای باند را دارد در صورتی که اگر مضارب فرودی از را داشته باشیم مثل و در دو طرف nm 550 بازتاب افزایش می یابد.
طراحی ضد بازتاب دو لایه ای:
میزان بازتاب از یک ضد بازتاب دو لایه ای شامل 4 پارامتر است 2 ضخامت و 2 ضریب شکست لایه ها و بدین ترتیب با نوشتن 2 ماتریس انتقال و ضرب کردن در هم، یک ماتریس انتقال کل برای این دو بدست خواهد آمد. برای دو لایه با ضخامت های ماتریس بصورت زیر خواهد بود:

و می توان با روشی برای دستیابی به مینیمم بازتاب جنس ها را مشخص نمود تا ضرائب شکست مورد لزوم بدست آید.
می توان ضرائب بازتاب را برداری فرض کرد و برای بازتاب صفر مجموع آنها را برابر صفر قرار داد.

یا با فرمول زیر نسبت ضرائب شکست دو لایه را بدست آورد:

یا

یا نسبت آنها را که برابر می باشد را بدست آورد.
در مورد روش اول بر روی یک پایه ضریب بالا مثل ژرمانیم با توجه به فرمول بازتاب مینیمم مقادیر و بصورت زیر بدست خواهند آمد.

- دو لایه با ضخامت های :
برای ضد بازتاب کردن شیشه کراون با ضریب شکست 51/1= nm یک لایه طول موج در طول موج nm550 از جنس مونواکسید سیلیکون یا یاقوت 65/1= n1 بر روی یک لایه با ضریب شکست 10/2 نشانده می شود که تقریباً تناسب خوبی دارد و می توان با استفاده از فرمول:

دریافت که نسبتاً خوب است و شکل آن با ضخامتهای فوق در ضمیمه آمده است.
- دو لایه با ضخامت های :
در فیلتر دو لایه اگر یک لایه را انتخاب کنیم منحنی دارای باند پهنتری نسبت به خواهد داشت و دارای دو مینیمم بازتاب می شود که قبلا در این مورد پایه شیشه کراون 52/1 است و محیط تابش هوا و با داشتن ضرائب شکست 38/1=n1 و 80/1=n2 دو می نیمم بازتاب در طول موجهای nm450 و nm710 داریم این کوتینگ بنام کوتینگ W نامیده می شود.
منحنی طراحی های فوق که توسط کامپیوتر طراحی و ترسیم شده ضمیمه می باشد.
سه لایه ای های ضد بازتاب:
اگر از سه لایه بجای 2 لایه استفاده کنیم باند پهنتری از طول موجها را خواهیم داشت در پوشش های سه لایه ای می توان با توجه به پارامتر ضریب شکست و ضخامت در شکل برای ضخامت لایه ها می توان در نظر گرفت یکی و دیگری البته می توان ضخامت های دیگری که متفاوت از هم باشند ولی بازتاب می نیمم و صفر داشته باشند نیز با روش برداری و محاسبات بدست آورد.
ابتدا به سه لایه ای نوع اول می پردازیم:
- سه لایه ای با ضخامت های :
در این سه لایه ای که ضخامت هر سه لایه هر کدام می باشد اگر ضرائب شکست لایه ها از محیط تا پایه به تدریج افزایش یابد یعنی در طول موجهای ، و بازتاب صفر خواهیم داشت بشکل برداری آن توجه نمائید.
شرط اینکه ضرائب بازتاب یا طول بردارها برابر باشند اینست که:

باشد که با طرفین وسطین کردن فرمولها معادلات زیر بدست خواهد آمد:

که قبلاً برای یک پایه ضریب 0/4 مثل ژرمانیم ضرائب سه لایه بترتیب برابر مقادیر زیر خواهند شد.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  46  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله خواص اپتیکی مواد

مقاله خواص دارویی زعفران

اختصاصی از هایدی مقاله خواص دارویی زعفران دانلود با لینک مستقیم و پر سرعت .

مقاله خواص دارویی زعفران


مقاله خواص دارویی زعفران
دانلود مقاله بررسی خواص دارویی زعفران
این فایل در قالب Word قابل ویرایش، آماده پرینت و ارائه به عنوان پروژه پایانی می باشد
 
قالب: Word
 
تعداد صفحات: 15

توضیحات:

مقدمه:
در حاشیه کویر و زمینهای خشک و تشنه جنوب خراسان، استهبانات فارس و مناطقی از کرمان، یزد، سمنان، اصفهان واستان مرکزی همگام با طراوت بارانهای پاییزی، گلی از درون خاک هویدا می شود که نامش زعفران است. دستهای زحمتکش زنان و کودکان دهقان این گلها را چیده و گرانترین ادویه جهان را بسان مروارید از صدفهای این گلهای زیبا و ارغوانی رنگ جدا می سازند تا نشان دهند که کشور ایران با قدمت چند هزار ساله همچنان بزرگترین تولید کننده زعفران و سرچشمه سلطان ادویه هاست. این محصول با عطر و طعم منحصر به فرد خود بر فرهنگ بسیاری از کشورهای جهان سیطره یافته است و امروزه در بسیاری از کشورهای اروپائی و آمریکائی گرانترین غذاها را با عطر و طعم این محصول مزین و معطر می سازند.

گیاه شناسی:
زعفران مزروعی گیاهی است علفی و چند ساله با نام علمی Crocus sativus این گیاه از خانواده زنبق ( Iridacea ) بوده که در اوایل پاییز یا در اوایل بهار گل می دهد. زعفران دارای ساقه زیر زمینی مدور، سخت، گوشتدار و تو پر بوده که پوسته فیبری قهوه ای رنگی آنرا احاطه نموده است. ساقه زیر زمینی این گیاه را در اصطلاح کشاورزان پیاز و در گیاهشناسی بنه یا کرم Corm)) می گویند. پوشش گل ازسه کاسبرگ و سه گلبرگ همرنگ بنفش تشکیل شده به طوری که تشخیص کاسبرگها از گلبرگها مشکل می باشد. برگها در جنس Crocus باریک ، بلند و ناودانی می باشند. مجموع برگها و گل در داخل یک پوشش لوله ای بنام چمچه قرار دارند. تعداد پرچم ها سه عدد بوده و طول پرچمها دو برابر بساک است. بساک زعفران زرد رنگ بوده و تخمدان گل در داخل چمچه و در چند سانتیمتری سطح خاک قرار دارد.

دانلود با لینک مستقیم


مقاله خواص دارویی زعفران

مقاله: کاشت، داشت، برداشت و خواص بادام

اختصاصی از هایدی مقاله: کاشت، داشت، برداشت و خواص بادام دانلود با لینک مستقیم و پر سرعت .

مقاله: کاشت، داشت، برداشت و خواص بادام


مقاله:  کاشت، داشت، برداشت و خواص بادام

عنوان مقاله:  کاشت، داشت، برداشت و خواص بادام

 قالب بندی :  Word

 

شرح مختصر :  بادام یکی از قدیمی ترین درختانی است که در مناطق سردسیری و نیمه سردسیری ایران کشت می شود. بعضی از دانشمندان گیاه شناس موطن اصلی بادام را به ایران نسبت می دهند. فرض بر این است که خواستگاه اصلی بادام منطقه وسیعی از ایران و تاجیکستان و افغانستان تا غرب پاکستان بوده که همراه کاروانها  به فنیقیه و از آنجا به یونان و بعدها توسط یونانی ها به سایر بنادر دریای مدیترانه انتقال و انتشار یافته است قریب دویست سال است که بادام در نقاط مختلف حوزه مدیترانه از طریق هسته تکثیر شده و در اثر انتخاب طبیعی توده های مختلفی از بادام در نقاط مختلف جغرافیایی دنیا به وجود آمده و سازگار شده اند. به طور مثال توده بادام های اسفاکس در تونس طوری با طبیعت آنجا سازگار شده اند که نیازی به سرما نداشته و نیاز سرمایی را از بین خود حذف نموده اند به طور کلی می توان گفت بادام بومی نقاط گرم و خشک آسیای غربی بوده و امروزه کشت آن در اسپانیا ،‌ ایتالیا ، ایران ،‌مراکش ،‌ پرتغال ، یونان و ترکیه به طور وسیع معمول گردیده است . در دو دهه اخیر شاهد افزایش تولید بادام در آمریکا نیز هستیم امروزه آن کشور یکی از صادر کنندگان عمده این محصول به اروپا و سایر نقاط دنیا بوده و در سطح بین المللی ۴/۳ صادرات جهانی مغز بادام را در اختیار دارد .

فهرست :

مقدمه

بادام

مشخصات گیاه شناسی بادام

مشخصات ظاهری درخت بادام

انواع بادام

نیازهای اکولوژیکی بادام

فصل گلدهی

سال آوری

موارد عمده ای که باید در انتخاب ارقام در نظر گرفت

کاشت نهال

فصل کاشت

تراکم کاشت

شرایط اقلیمی

قدرت رشد درخت

کشت دیم

آفت ها و بیماریهای عمده درختان بادام

اهمیت اقتصادی بادام در ایران و جهان

مشکلات بادام کاری در ایران

عملیات قبل از احداث باغ

انتخاب زمین باغ

آماده سازی زمین

عملیات قبل از کاشت

عملیات در سطح زمین باغ پس از کاشت

خاک ورزی یا اصلاح خاک

برداشت

نوع بادام

انواع دیگر بادام

بادام زمینی

کاشت و پرورش دخت بادام هندی

 ازدیاد درخت کاشو

کاشت درخت

ترکیبات شیمیایی

خواص دارویی

خواص بادام تلخ

روغن بادام

اسانس بادام تلخ

شکوفه و گل بادام

پوست میوه بادام


دانلود با لینک مستقیم


مقاله: کاشت، داشت، برداشت و خواص بادام