هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد درمان سرطان با ریاضی 16 ص

اختصاصی از هایدی تحقیق درمورد درمان سرطان با ریاضی 16 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 22

 

ریاضی و پزشکی

درمان سرطان با ریاضی !

گروهی از دانشمندان آمریکایی مدلی رایانه ای را ارائه کرده اند که براساس آن می توان ترکیبی از موثرترین روش های درمانی معالجه سرطان را با استفاده از آلگوریتم های ریاضی ارائه کرد. به گزارش مهر، پروژه تحقیقاتی لیزه دو فلیس استاد ریاضی کالج هاروی ماد در کالیفرنیا که با عنوان درمان سرطان با ریاضی" معرفی شده است که نشان می دهد که از ترکیب علم سرطان شناسی و ریاضی می توان بیشترین شانس را برای شناسایی و تشخیص درمان های موثر در مبازره با تومرها بدست آورد.این استاد دانشگاه چند سیستم ریاضی را برای ترکیب استراتژی ها مختلف ایمنی درمانی، شیمی درمانی و واکسینودرمانی شناسایی کرده است.دو فلیس که بررسی های خود را در کنگره سالانه "ائتلاف ملی برای یافته های علمی" در واشنگتن مطرح کرده است، در این خصوص توضیح داد : "ما یکسری از مدل های ریاضی خاص را توسعه داده ایم که به کمک آنها می توان دینامیک کاملتر واکنش های میان سلولهای نئوپلاستیکی، سیستم ایمنی و درمان های پزشکی سازگار را دریافت. از آنجا که این راه درصد خطر سلامت بیمار را تا حدقابل ملاحظه ای کاهش می دهد، بسیار حائز اهمیت است."براساس مدیکال نیوز تو دی، این مدل ها با استفاده از شبیه سازی و تصویرسازی هندسی ویژگی های متعدد بیماری به روش مجازی درمان های موثر را ارائه می کند.درحقیقت با این روش، یک مدل ریاضی عرضه می شود که به اطلاعات متعدد افزایش سلولهای سرطانی و واکنش آنها با سیستم ایمنی ترجمه می شود. به این ترتیب پزشکان می توانند قبل از آغاز درمان سرطان با داروهای خطرناک شیمیایی که عوارض جانبی زیادی دارند، بهترین درمان را تشخیص دهند.

 

اساس ریاضیات بازسازی تصویر در رادیولوژی (پزشکی)

در این رساله اساس ریاضی روشهای تصویرسازی توضیح داده می‌شوند، که فرآیند بازسازی توسط کامپیوتر پردازش می‌شود. این روشها بسیار شبیه به فرآیند سیگنال در مهندسی الکترونیک می‌باشند. در مهندسی الکترونیک ، سیگنالهای یک بعدی بیشتر مورد توجه‌اند. در صورتیکه در بازسازی نگاره از سیگنالهای دو بعدی استفاده می‌شود. از این رو دو فصل اول این رساله بیشتر درباره سیگنالهای یک بعدی می‌باشد و فصل سوم به تشریح روشهای بازسازی تصویر می‌پردازد. از روشهای فرایند سیگنال در رادیولوژی به عنوان بازسازی نگاره، استفاده می‌شود. این رساله به سه قسمت مهم: مدلهای سیستم و تبدیلات ، فیلترینگ و بازسازی تصویر تقسیم می‌شود. فصل اول: نشان می‌دهد که چگونه روشهای ریاضی در مسائل رادیولژیکی بکار می‌روند. در این فصل مدلهای سیستم را معرفی و تئوری سیستمهای خطی را توضیح می‌دهیم. در اینجا اثر یک سیستم روی یک سیگنال ورودی و تبدیل آن به یک سیگنال خروجی مورد بررسی قرار گرفته و چند مثال از سیستمهای خطی ارائه می‌شوند. سپس نقش ویژه توابع و اعداد مختلط را در تبدیلات فوریه توضیح می‌دهیم. همچنین در این فصل روشهای آماری در فرایندهای تصادفی و فرایندهای تصادفی در اندازه‌گیری پارازیت در تصویرسازی توضیح داده می‌شوند. تبدیل فوریه روشی برای توضیح سیگنالها برحسب فرکانس می‌باشد، که برای درک عملگرها در سیستمها بسیار مفیدند. لذا خواص تبدیل فوریه برای کاربرد در کامپیوترهای دیجیتال توسط عملگر تبدیل فوریه توضیح داده می‌شود. ارتباط بین تبدیل فوریه و گسستگی تبدیل فوریه به تشریح نمونه‌برداری کمک می‌کند که در فصل دوم تشریح می‌شود. فصل دوم: به تشریح عمل فیلترینگ می‌پردازد. فیلترینگ یا صاف کردن مربوط به اصلاح سیگنالها می‌شود، تا یک تصویر را از پارازیت سیگنالهای ناخواسته صاف کند. فیلترینگ یک قسمت مهم در بازسازی تصویر است از این رو نحوه فیلترینگ سیگنالهای تصادفی که در درک ساختن تصویر مهم می‌باشند مورد بحث قرار می‌گیرند. سپس روشهای جبر خطی و فیلتر تصادفی با هم مقایسه می‌شوند. قسمتی از فصل دوم مربوط به فیلتر وینر (Wiener) می‌باشد که برای درک تصویرسازی در حضور پارازیت بسیار مهم است . فصل سوم: به بررسی ساختن تصویر و کاربردهای رادیولوژیکی می‌پردازد. در این فصل با پنج روش مهم بازسازی نگاره آشنا می‌شویم. بازسازی از نمونه‌برداری فوریه روشی برای NMR است . بازسازی تصویر در حضور پارازیت و بازسازی تصویر در غیاث پارازیت در توموگرافی کامپیوتری مورد استفاده دارند. بازسازی توموگرافی گسیل تک فوتون (SPECT) و بازسازی از نمونه‌های چندگانه در قسمتهای آخر فصل سوم توضیح داده می‌شوند و در انتها به تشریح تصویرسازی با گسیل پوزیترون می‌پردازیم به طور کلی فصلها و قسمتهای این رساله از هم مستقل نمی‌باشند و اغلب به هم وابسته‌اند. تقسیم‌بندی مفصل‌تر فصلها در فهرست مطالب آمده‌اند. این رساله تمام مبانی ریاضیات مورد استفاده در تصویرسازی رادیولوژی را از مفاهیم ساده پایه شروع کرده و سپس آنرا به حوزه ریاضیات پیشرفته مرتبط می‌کند. دانشجویان پزشکی یا رزیدنتهای رادیولوژی یا متخصصین رادیولوژی که بخواهند اساس ریاضی تصویرسازی کامپیوتری را درک کنند بدون اشکال و مراجعه به کتابهای ریاضی دیگر می‌توانند از این رساله استفاده کنند و درک خود را به سطح ریاضیات پیشرفته در این مباحث گسترش دهند

ارتباط علم ریاضیات  با علوم زیستیدانشمندان حوزه علوم دقیق(hard sciences) _ علومی که با قوت ریاضی، فرمول ها و معادلات پشتیبانی می شوند _ به طور سنتی نگاهی تحقیر آمیز به پژوهش ها در سوی دیگر طیف علوم دارند، این نگاه تحقیر آمیز _ در حالی که بودجه های دولتی از فیزیک به زیست شناسی و پزشکی تغییر جهت داده است _ اندکی تغییر کرده است. اما در زمانی که زیست شناسان نشان می دهند که آنها می توانند به همان اندازه همکارانشان در علوم دقیق پژوهش های کمی انجام دهند در حال ناپدید شدن است.یک نمونه از این دگرگونی را می توان در پژوهش ها درباره سرطان مشاهده کرد. به گفته «هانس اوتمر» ریاضیدان دانشگاه مینه سوتا در مینیاپولیس آمریکا که در مقاله ای در شماره آینده «نشریه زیست شناسی ریاضی» به بازبینی این موضوع پرداخته است، درک فرآیندهای میکروسکوپی امکان تکوین الگوهای ریاضی سودمندی از این بیماری را به وجود آورده است.در واقع این زمینه تحقیقاتی در حال شکوفایی است و یک نشریه علمی دیگر، نشریه «سیستم های دینامیکی مداوم و مجزا سری های (Discrete and Continues Dynamical System_Series B) در فوریه سال میلادی جاری شماره ویژه ای را به این موضوع اختصاص داده است.خانم «زیوا آگور» و همکارانش در مؤسسه ریاضیات زیستی پزشکی (Institute for Medical biomathematics) در «بن آتاروث» اسرائیل در مقاله ای در این شماره ویژه الگویی را ارائه می کنند که تلاش می کند چگونگی عمل رگزایی (angiogenesis ) _ فرآیندی که غدد سرطانی به وسیله آن رگ های خونی خودشان را ایجاد می کنند _ را توصیف کند.هنگامی که یک غده یا تومور در ابتدا از یک سلول که به علت جهش ژنتیکی دارای قابلیت تکثیر نامحدود شده است به وجود می آید، در شرایط معمول رشد آن در اندازه ای در حد یک میلی متر محدود می شود. این امر ناشی از آن است که معمولاً رگ های خونی اطراف به درون تومور نفوذ نمی کنند، بنابراین سلول های عمق تومور نمی توانند به مواد مغذی و اکسیژن دست یابند و می میرند. تومورهایی در این اندازه ندرتاً باعث به خطر افتادن سلامتی انسان می شوند و در واقع بسیاری از تومورها در همین اندازه باقی می مانند. اما در برخی از تومورها جهش های ژنتیکی بیشتر امکان تولید شدن مواد شیمیایی به نام عوامل رشد (growth factors) را فراهم می کند که تشکیل عروق خونی درون غده را تحریک می کنند. این فرآیند نه تنها به این علت خطرناک است که امکان رشد تومور و بزرگتر شدن اندازه آن را فراهم می کند، بلکه از این لحاظ هم خطر آفرین است که اکنون سلول های سرطانی می توانند وارد جریان خون شوند، در بدن به گردش درآیند، در مکان دیگر مستقر شوند و به رشد خود ادامه دهند. این پراکنده شدن سلول های سرطانی که باعث تشکیل تومورهای ثانوی می شود «متاستاز» (metastasis) نامیده می شود و در بسیاری از موارد همین متاستازها هستند که مرگ بیمار را موجب می شوند.دکتر آگور به کمک تصویربرداری با تشدید   مغناطیسی یا MRI تومورهایی را که در حال رگزایی بودند مورد بررسی قرار داد و سپس نظامی از معادلات دیفرانسیل را برای شبیه سازی آنچه که می دید ترتیب داد. معادلات دیفرانسیل سرعت تغییر یک متغیر (مثلاً میزان عامل رشد تولید شده) را به مقدار فعلی آن و در مواردی به مقدار آن در گذشته ربط می دهند و این معادلات تقریباً اساس الگوهای ریاضی سرطان هستند؛ الگوهایی که معمولاً متشکل از مجموعه ای از معادلات دیفرانسیل «همزمان»، هر کدام در مورد یک متغیر، هستند که نتایج هر کدام وارد معادله بعدی می شود. حل کردن چنین نظام هایی از معادلات مشکل است؛ در واقع تنها به ندرت ممکن است راه حل دقیق


دانلود با لینک مستقیم


تحقیق درمورد درمان سرطان با ریاضی 16 ص