هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درباره کنترل فعال نامتمرکز سازه‌های بلند با پسخور شتاب 11 ص

اختصاصی از هایدی تحقیق درباره کنترل فعال نامتمرکز سازه‌های بلند با پسخور شتاب 11 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 11

 

کنترل فعال نامتمرکز سازه‌های بلند با پسخور شتاب

چکیده:

پاسخ سازه‌های بزرگ مقیاس و بلند را می‌توان با بهره‌گیری از الگوریتم‌های کنترل فعال مناسب و بکار بردن عملگرها در طبقات کاهش داد و استفاده از روش‌های نوین کنترل جهت رسیدن به ترازهای ایمنی بالا در این راستا می‌باشد. در این مقاله روش کنترل نامتمرکز سازه‌های بلند با پسخور شتاب ارائه شده است. در روش کنترل نامتمرکز، یک سازه بزرگ به چند زیرسازه کوچکتر تقسیم شد و برای هر زیرسیستم، الگوریتم کنترل مخصوص آن استفاده می‌شود. زیرسیستم‌های مختلف با یکدیگر همپوشانی داشته و در نقاط مشترک با یکدیگر تبادل اطلاعات خواهند داشت. الگوریتم مورد استفاده جهت کنترل سازه، الگوریتم کنترل بهینه لحظه‌ای با بهره‌گیری از پسخور شتاب بوده و در انتها یک نمونه عددی جهت الگوریتم پیشنهاد شده در این مقاله و بررسی نتایج آن با حالت کنترل متمرکز ارائه گردیده است.

واژه‌های کلیدی: کنترل، نامتمرکز، سازه‌های بلند، پسخور.

1) مقدمه

سازه‌های بلند از انواع سیستم‌های سازه‌ای می‌باشند که ضرورتاً در کنترل لرزش‌های آن باید از کنترل غیرمتمرکز استفاده شود. این لرزش‌ها می‌توانند شامل دو دسته لرزش‌های کلی و لرزش‌های موضعی شوند. از طرفی با توجه به بزرگی این سازه‌ها، مطمئناً بهره‌گیری از یک مرکز کنترلی ارتعاشات برای این ساختمان‌ منطقی نبوده و باید از چند مرکز کنترل ارتعاشات استفاده شود.

در سازه‌های بلند از چندین نوع سیستم باربر گرانشی و زلزله استفاده می‌شود که غیرمتمرکز کردن کنترل سازه تا اندازه زیادی به سیستم باربر جانبی بستگی دارد. در واقع بحث نامتمرکز کردن کنترل در ترازها، در جهت بالا بردن ایمنی کنترل ارتعاشات سازه‌های بلند بوده و در این حالت در صورت از کار افتادن یکی از مغزهای کنترل با سری‌سازی خودکار سیستم می‌توان کنترل ارتعاشات سازه را به زیرسیستم سالم سپرد.

به طور کلی کنترل فعال (Active control) سازه‌ها شامل دو بخش الگوریتم‌های موردنیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزم‌های اعمال نیرو می‌باشد. در این نوع کنترل، از الگوریتم‌های گوناگونی که دارای دیدگاه‌های متفاوتی می‌باشند، استفاده می‌شود. الگوریتم‌هایی نظیر کنترل بهینه، کنترل بهینه لحظه‌ای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتم‌های مقاوم (Robust) مانند H2، H∞، کنترل مود لغزشی (Sliding Mode Control) و غیره از جمله الگوریتم‌های بکار رفته در کنترل سازه می‌باشند.

کنترل غیرمتمرکز در آغاز در مورد سیستم‌های قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، ونگ و دیویدسون (Wan g & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین کنترلی با پس‌خور محلی و جبران‌سازی دینامیکی پایدار باشد، بیان کردند. یانگ و همکاران (Yang et al) روش مود لغزشی را برای اینکه کنترل غیرمتمرکز سیستم‌های بزرگ مقیاس، زیر اثر ورودی خارجی و با وجود عامل تاخیر زمانی در متغیرهای حالت ارائه کردند. طرح کنترل شامل یک قانون کنترلی غیرمتمرکز و یک فوق صفحه سوئیچینگ از نوع انتگرالی است. آنها ابتدا قانون کنترل غیرمتمرکز را به گونه‌ای تعیین کردند تا شرایط رسیدن کلی (Global Reaching low) برقرار شود.

کنترل غیرمتمرکز در مهندسی عمران اولین بار توسط ویلیامز و ژو (Williams & Xu) در سازه‌های فضایی انعطاف‌پذیر بررسی شد. سپس ریاسیوتاکی و بوسالیس (Ryaciotaki & Boussalis) از روش کنترل تطبیقی مدل مرجع (Reference Adaptive Control Theory Model) برای تعیین قانون کنترلی غیرمتمرکز استفاده کردند. دیکس و همکاران (Dix et al) چندین روش غیرمتمرکز را برای سازه‌های فضایی بیان کردند. هینو و همکاران (Hino et al) در مورد مسئله کنترل یک سازه ساختمانی چند درجه آزادی مانند یک ساختمان بلندمرتبه با بهره‌گیری از کنترل تطبیقی ساده غیرمتمرکز بحث کرده‌اند. رفویی و منجمی‌نژاد (Rofooei & Monajeminejad) نسبت به کنترل نامتمرکز سازه‌های بلند با بهره‌گیری از کنترل بهینه لحظه‌ای اقدام نمودند. آنها ابتدا به بررسی دلایل ضرورت استفاده از کنترل غیرمتمرکز پرداخته شده و سپس با طراحی کنترل‌کننده‌ها و ماتریس بهره (Gain Matrix) به بررسی دو حالت کنترل یکی با بهره‌گیری از پس‌خور سرعت و دیگری کنترل با بهره‌گیری از پس‌خور سرعت و جابجایی پرداختند.

منجمی‌نژاد و رفویی در ارتباط با کنترل غیرمتمرکز در سازه‌های بلند، در ادامه به بررسی الگوریتم مود لغزشی (Sliding Mode) به صورت غیرمتمرکز پرداختند. مراحل طراحی کنترل‌کننده در روش مود لغزشی شامل دو مرحله است. مرحله اول شامل طراحی سطوح لغزش بوده و مرحله دوم طراحی رابطه کنترل یا قانون رسیدن (Reaching Law) را در بر می‌گیرد. باید توجه داشت که نامتمرکز بودن کنترل، قابلیت اعتماد به پایداری سیستم را افزایش داده و در صورت از کار افتادن کنترل یکی از زیرسیستم‌ها، سیستم کنترل دچار آسیب کلی نخواهد گردید. کنترل نامتمرکز می‌تواند در دو حالت با درنظر داشتن تاثیرات درجات آزادی مشترک بین زیرسیستم‌ها و یا بدون درنظر داشتن این تاثیرات انجام شود که البته در حالت با درنظر داشتن تاثیرات درجات آزادی به پایداری هر زیرسیستم و کل سیستم کنترل می‌توان اطمینان بیشتری داشت.

در مقاله حاضر کنترل متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با درنظر داشتن درجات آزادی مشترک بین زیرسازه‌ها و اثر دوگانه آنها بر یکدیگر بررسی گردیده است. الگوریتم مورد استفاده کنترل بهینه لحظه‌ای‌ (Instantaneous Optimal Control) می‌باشد که توسط آقایان یانگ و همکارانش بسط داده شده و از پس‌خور شتاب جهت محاسبه نیروهای کنترل استفاده گردیده است. روش نامتمرکز کردن کنترل در این مقاله بر اساس تعداد درجات آزادی بوده و نمونه‌های عددی نیز با بکارگیری الگوریتم کنترل نامتمرکز حل و نتایج آنها با حالت کنترل متمرکز مقایسه گردیده و ارائه شده‌اند.

2) روابط حاکم

1-2) کنترل نامتمرکز و روابط وابسته

مدل ساختمان برشی در حالت دو بعدی درنظر می‌باشد. در این مدل هر طبقه به صورت یک درجه آزادی مدل می‌شود که به دو تراز بالا و پایین بوسیله یک فنر برشی و یک میراگر متصل شده است. مقالات زیادی در حوزه کنترل سازه‌ها بر اساس این مدل نگاشته شده‌اند. منجمی‌نژاد و رفویی مدل سازه‌ای را به صورت ساختمان برشی درنظر گرفته است و روابط مربوطه را بدست آورده‌اند. در این حالت معادله دیفرانسیل حاکم بر رفتار دینامیکی یک مدل سازه‌ای دوبعدی به صورت زیر است:

(1)

که در آن M ماتریس جرم، K ماتریس سختی، C ماتریس میرایی، H ماتریس موقعیت کنترلر‌ها، U فرمان کنترلی، شتاب زلزله وارد بر ساختمان، بردار تغییر مکان‌های طبقات و {1} بردار ستونی است که تمام مولفه‌های آن عدد یک می‌باشد. ماتریس‌های رابطه به شرح زیر بوده و نحوه ریز کردن سیستم نیز مطابق شکل 1 می‌باشد.

 

شکل (1) مدل سازه‌ای یک ساختمان بلند

(2)

n: تعداد طبقات ساختمان؛

r: تعداد کنترل کننده‌ها؛

ki: سختی برشی طبقه iام؛

mi: وزن طبقه iام.

در این روابط، xi را می‌توان به دو صورت زیر تعریف کرد:

xire: جابجایی طبقه iام نسبت به یک دستگاه اینرسی (تغییر مکان اینرسی)

xid: جابجایی طبقه iام نسبت به طبقه زیرین آن (Drift)


دانلود با لینک مستقیم


تحقیق درباره کنترل فعال نامتمرکز سازه‌های بلند با پسخور شتاب 11 ص

تحقیق درباره سازه‌های فولادی 40 ص

اختصاصی از هایدی تحقیق درباره سازه‌های فولادی 40 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 41

 

ارزش جوش

ارزش جوش در واقع نیروی مجاز جوش با ضخامت گلوی مؤثر te و طول یک سانتیمتر می‌باشد.

 

 

= مقاومت نهایی کششی فلز الکترود

= ضریب کنترل کیفیت

= اندازه گلوی مؤثر (برحسب نوع جوش و مشخصات آن طبق گفته‌های قبلی به دست می‌آید.)

مقدار ارزش جوش () برای جوش گوشه با الکترود E60 و به دلیل مصرف زیاد در اتصالات ساختمانی به صورت زیر محاسبه گشته و مورد استفاده قرار می‌گیرد:

 

تذکر: در رابطه فوق مقدار برای افزایش اطمینان به طور تقریبی قرار داده شده است.

در روابط محاسباتی هم می‌توان از مقادیر تقریبی و یا مقدار دقیق 668.115a که از فرمول کلی ارزش جوش به دست می‌آید استفاده نمود.

جوش اعضای محوری

اعضای محوری تحت کشش یا فشار تنها بوده، به همین جهت بایستی ابتدا ظرفیت کششی یا فضای اتصال را به دست آوریم، سپس یکی از انواع جوش را با انتخاب جنس الکترود مناسب در رابطه با فلز مبنا، بر مبنای ظرفیت به دست آمده طراحی می‌کنیم.

تذکر: مقاومت جوشهای مختلف به شرح زیر می‌باشد.

I. جوش شیاری

جوش

II. جوش گوشه

(الف) با ساق‌های مساوی

جوش

(ب) با ساق‌های نامساوی

جوش

III. جوش انگشتانه

جوش

D= قطر انگشتانه

IV. جوش کام

جوش

b= طول جوش کام

t = عرض جوش کام

l = طول جوش

جوش متعادل (Ballanced Weld)

وقتی که اعضای تحت تنش مستقیم محوری، دارای سطح مقطع غیر متقارن نسبت به نیروی محوری می‌باشند، باعث ایجاد برون محوری در اتصال جوشی می‌شود. زیرا نیروی محوری وارده دارای خروج از مرکزیت نسبت به مرکز گرانش (C.G) جوش می‌باشد.

در این حالت بایستی ابعاد جوش و طول جوش و در نهایت مقاومت حاصله طوری تعیین گردد، که جوش حاصله متعادل باشد.

با لنگرگیری حول نقطه A داریم:

 

که در رابطه فوق مقدار F2 برابر است با:

 

تذکر: در صورتی که در انتهای مقطع جوش نداشته باشیم نیروی F2 مساوی صفر می‌گردد.

 

یا

محاسبه طول جوش‌ها:

 

تذکر: با توجه به عرض ناحیه انتهایی مقطع مقدار LW2‌ نیز مشخص می‌باشد (در صورت وجود).

اتصالات جوشی با خروج از مرکزیت (Eccentric Welded Connections)

مؤلفه‌های تنش در اثر نیروی برشی مستقیم

 

مؤلفه‌های تنش در اثر پیچش

 

برآیند تنش‌ها

 

کنترل تنش برآیند مجاز

 

F مجاز = مطابق جدول به دست می‌آید.

تذکر: در طراحی جوش اتصالات برای سهولت می‌توان جوش را خطی فرض کرد و پس از تعیین fr ‌برای ضخامت مؤثر واحد (te=1) آن را بایستی کوچکتر مساوی ارزش جوش قرار دهیم و ضخامت مؤثر (te) و متعاقب آن نیز بعد جوش را به دست آوریم.


دانلود با لینک مستقیم


تحقیق درباره سازه‌های فولادی 40 ص

مقاله کاربرد کامپوزیت‌های FRP در سازه‌های بتن آرمه

اختصاصی از هایدی مقاله کاربرد کامپوزیت‌های FRP در سازه‌های بتن آرمه دانلود با لینک مستقیم و پر سرعت .

مقاله کاربرد کامپوزیت‌های FRP در سازه‌های بتن آرمه


مقاله  کاربرد کامپوزیت‌های FRP در سازه‌های بتن آرمه

لینک پرداخت و دانلود در "پایین مطلب"

 

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:39

خلاصه

 خوردگی قطعات فولادی در سازه‌های مجاور آب و نیز خوردگی میلگردهای فولادی در سازه‌های بتن آرمه ای که در معرض محیط‌های خورندة کلروری و کربناتی قرار دارند، یک مسالة بسیار اساسی تلقی می‌شود. در محیط‌های دریایی و مرطوب وقتی که یک سازة بتن‌آرمة معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمک‌ها، اسید‌ها و کلرورها قرار گیرد، میلگردها به دلیل آسیب دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوستة بیرونی بتن فشار می‌آورد که به خرد شدن و ریختن آن منتهی می‌شود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازة بتن آرمه‌ای که به دلیل خوردگی میلگردها آسیب دیده است، میلیون‌ها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر ویژه‌ای جهت جلوگیری از خوردگی اجزاء فولادی و میلگرد‌های فولادی در بتن اتخاذ گردد که از جمله می‌توان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مساله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک مادة جدید مقاوم در مقابل خوردگی معطوف گردیده است.  از آن‌جا  که  کامپوزیت‌های FRP (Fiber Reinforced Polymers/Plastics) بشدت در مقابل محیط‌های قلیایی و نمکی مقاوم هستند که در دو دهة اخیر موضوع تحقیقات گسترده‌ای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بوده‌اند. چنین جایگزینی بخصوص در محیط‌های خورنده نظیر محیط‌های دریایی و ساحلی بسیار مناسب به نظر می‌رسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP  صورت گرفته و قابلیبت کاربرد آنها به عنوان جانشین کامل فولاد در سازه‌های مجاور آب و بخصوص در سازة بتن آرمه، به جهت حصول یک سازة کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.


1 – مقدمه

بسیاری از سازه‌های بتن آرمة موجود در دنیا در اثر تماس با سولفاتها، کلریدها و سایر عوامل خورنده، دچار آسیب‌های اساسی شده‌اند. این مساله هزینه‌های زیادی را برای تعمیر، بازسازی و یا تعویض سازه‌های آسیب ‌دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یک مسالة مهندسی، بلکه به عنوان یک مسالة اجتماعی جدی تلقی شده است ]1[. تعمیر و جایگزینی سازه‌های بتنی آسیب‌دیده میلیون‌ها دلار خسارت در دنیا به دنبال داشته است. در امریکا، بیش از 40 درصد پلها در شاهراهها نیاز به تعویض و یا بازسازی دارند ]2[. هزینة بازسازی و یا تعمیر سازه‌های پارکینگ در کانادا، 4 تا 6 میلیارد دلار کانادا تخمین زده شده است ]3[. هزینة تعمیر پلهای شاهراهها در امریکا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیکه برای بازسازی کلیة سازه‌های بتن آرمة آسیب‌دیده در امریکا در اثر مسالة خوردگی میلگردها، پیش‌بینی شده که به بودجة نجومی 1 تا 3 تریلیون دلار نیاز است ]3[ !

از مواردی که سازه‌های بتن آرمه به صورت سنتی مورد استفاده قرار می‌گرفته، کاربرد آن در مجاورت آب و نیز در محیط‌های دریایی بوده است. تاریخچه کاربرد بتن آرمه و بتن پیش‌تنیده در کارهای دریایی به سال 1896 بر می‌گردد ]4[. دلیل عمدة این مساله، خواص ذاتی بتن و منجمله مقاومت خوب و سهولت در قابلیت کاربرد آن چه در بتن‌ریزی در جا و چه در بتن پیش‌تنیده بوده است. با این وجود شرایط آب و هوایی و محیطی خشن و خورندة اطراف سازه‌های ساحلی و دریایی همواره به عنوان یک تهدید جدی برای اعضاء بتن آرمه محسوب گردیده است. در محیط‌های ساحلی و دریایی، خاک، آب زیرزمینی و هوا، اکثراً حاوی مقادیر زیادی از نمکها شامل ترکیبات سولفور و کلرید هستند.

در یک محیط دریایی نظیر خلیج فارس، شرایط جغرافیایی و آب و هوایی نامناسب، که بسیاری از عوامل خورنده را به دنبال دارد، با درجة حرارت‌های بالا و نیز رطوبت‌های بالا همراه شده که نتیجتاً خوردگی در فولادهای به کار رفته در بتن آرمه کاملاً تشدید می‌شود. در مناطق ساحلی خلیج فارس، در تابستان درجة حرارت از 20 تا 50 درجة سانتیگراد تغییر می‌کند، در حالیکه گاه اختلاف دمای شب و روز، بیش از 30 درجة سانتیگراد متغیر است. این در حالی است که رطوبت نسبی اغلب بالای 60 درصد بوده و بعضاً نزدیک به 100 درصد است. به علاوه هوای مجاور تمرکز بالایی از دی‌اکسید گوگرد و ذرات نمک دارد [5]. به همین جهت است که از منطقة دریایی خلیج فارس به عنوان یکی از مخرب‌ترین محیط‌ها برای بتن در دنیا یاد شده است [6].


دانلود با لینک مستقیم


مقاله کاربرد کامپوزیت‌های FRP در سازه‌های بتن آرمه

دانلود تحقیق کنترل فعال متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با پسخورجابجایی و سرعت 21 ص

اختصاصی از هایدی دانلود تحقیق کنترل فعال متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با پسخورجابجایی و سرعت 21 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

کنترل فعال متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با پسخورجابجایی و سرعت

*مهران فدوی، فیاض رحیم‌زاده رفویی2، سهیل منجمی‌نژاد3

1. دانشجوی دکتری و عضو هیات علمی دانشگاه آزاد اسلامی واحد گرگان

2. استاد دانشگاه صنعتی شریف تهران

3. استادیار دانشگاه آزاد اسلامی واحد تهران مرکز

*. MehranFadavi@yahoo.com

چکیده

نیاز به ترازهای ایمنی بالاتر در سازه‌های بااهمیت، تامین پایداری و ایجاد محدودیت‌هایی در خصوص میزان لرزش به لحاظ احساس ایمنی ساکنین در سازه‌های بلند از اهداف اصلی طراحان و مهندسان عمران می‌باشد. در این گونه سازه‌ها بکارگیری سیستم‌های کنترل ارتعاشات سازه‌ای به صورت فعال و غیرفعال مرسوم بوده و برخی از آنها نیز کاربردی شده‌اند. در این مقاله کنترل متمرکز سازه‌های بلند تشریح شده و در خصوص نامتمرکز کردن این کنترل به گونه‌ای که بر رفتار کلی سازه تاثیر مثبت داشته باشد، پژوهش گردیده است. در این پژوهش سازه به صورت سه بعدی مدل شده و الگوریتم کنترل فعال بهینه لحظه‌ای، با پسخور جابجایی و سرعت جهت حل معادلات کنترل استفاده شده است. روابط حاکم بر پایداری سازه در حالت نامتمرکز و نوشتن الگوریتم حل معادلات به گونه‌ای که پایداری سازه در کلیه حالت‌ها برقرار باشد، بحث و اثبات گردیده و در انتها نمونه‌های عددی از حل روابط و معادلات حاکم با توجه به حالت‌های گوناگون از نامتمرکزسازی کنترل در سازه‌‌های بلند ارائه شده است. یکی از حالت‌‌های نامتمرکزسازی کنترل به تقسیم سازه اصلی با تعداد 3n درجه آزادی به زیرسازه‌‌هایی با تعداد 3ni درجه آزادی گفته می‌شود که مجموع تعداد درجه آزادی زیر سازه‌ها برابر با تعداد درجه آزادی سازه اصلی می‌باشد.

واژه‌های کلیدی: سازه‌های بلند، متمرکز، نامتمرکز، سه بعدی، پسخور

1. مقدمه

کنترل فعال (Active Control) ‌سازه‌ها به طور کلی شامل دو بخش الگوریتم‌های مورد نیاز جهت بدست آوردن مقدار نیروی کنترل و مکانیزم‌های اعمال نیرو می‌باشد. در این نوع کنترل، از الگوریتم‌های گوناگونی که دارای دیدگاه‌های کنترلی متفاوتی می‌باشند، استفاده می‌شود. الگوریتم‌هایی نظیر کنترل بهینه، کنترل بهینه لحظه‌ای (Instantaneous Optimal Control)، جایابی قطبی (Pole Assignment)، کنترل فضای مودی (IMSC)، پالس کنترل و الگوریتم‌های مقاوم (Robust) مانند ، ، کنترل مود لغزش (Sliding Mode Control) و غیره از جمله الگوریتم‌های به کار رفته در کنترل سازه می‌باشند. با توجه به تعریف‌هایی که از کنترل فعال توسط آقای یائو (Yao) و سایر پژوهشگران شده است یک سیستم کنترل فعال شامل بخش‌های زیر می‌باشد (شکل 1):

 

شکل 1: الگوریتم کلی کنترل فعال سازه در حالت کنترل متمرکز

سیستم‌های کنترل را می‌توان در دو دسته سیستم‌های معمولی و سیستم‌های بزرگ مقیاس (Large Scale Systems) در نظر گرفت. در سیستم‌های معمولی، کنترل سازه به صورت متمرکز مناسب بوده و نیازی به تقسیم سیستم به سیستم‌های ریزتر نمی‌باشد ولی در سیستم‌های بزرگ مقیاس نظیر ساختمان‌های بلند و حجیم، اندازه سیستم کنترلی و حجم آن در انتقال و جابجایی اطلاعات و فرمان‌ها، به ویژه با توجه به اینکه نیروهای لرزه‌ای در مدت زمان کوتاهی (کمتر از دقیقه) بر سازه وارد می‌شوند، مشکل ایجاد کرده و تأخیر زمانی قابل توجهی در صدور فرمانها به وجود می‌آورد. بر این اساس تلاش می‌شود تا هر بخش از سیستم به صورت مستقل کنترل شود. به هر بخش زیرسیستم گفته شده و یک سیستم از تعداد معینی زیرسیستم (Subsystem) تشکیل می‌شود (شکل 2).

 

شکل 2: الگوریتم کلی کنترل فعال در حالت کنترل غیرمتمرکز با سه زیرسیستم

شیوه ریز کردن یک سیستم به چند زیر سیستم بستگی به طرح سیستم از نظر سازه‌ای، درجات آزادی آن و میزان گستردگی فیزیکی آن دارد. کنترل غیرمتمرکز در آغاز در مورد سیستم‌های قدرت بکار رفته و سپس توسط افرادی مانند یانگ و سیلژاک (Yanng & Siljack) گسترش یافته است. در این کنترل، آقایان ونگ و دیویدسون (Wang & Davidson) مساله پایداری سیستم را بررسی کردند. آنها یک شرط لازم و کافی را برای اینکه سیستم تحت قوانین


دانلود با لینک مستقیم


دانلود تحقیق کنترل فعال متمرکز و نامتمرکز سازه‌های بلند در حالت سه بعدی با پسخورجابجایی و سرعت 21 ص

دانلود تحقیق درباره تونل سازی

اختصاصی از هایدی دانلود تحقیق درباره تونل سازی دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 8

 

تاریخچه تونل سازی و سازه‌های زیر زمینی

 

 

 

 

احتمالا اولین تونل‌ها در عصر حجر برای توسعه خانه‌ها با انجام حفریات توسط ساکنان شروع شد . این امرنشانگر این است که آنها در تلاشهایشان جهت ایجاد حفریات به دنبال راهی برای بهبود شرایط زندگی خود بوده اند. پیش ازتمدن روم باستان ، در مصر ، یونان ، هند و خاور دور و ایتالیای شمالی ، تماما تکنیکهای تونلسازی دستی مورد استفاده قرار می‌گرفت که در اغلب آنها نیز از فرایندهای مرتبط با آتش برای حفر تونل های نظامی ، انتقال آب و مقبره‌ها کمک گرفته شده است. در ایران نیز از چند هزار سال پیش، به منظور استفاده از آبهای زیر زمینی تونل هایی موسوم به قنات حفر شده است که طول بعضی از آنها به 70 کیلومتر و یا بیشتر نیز می‌رسد. تعداد قنات های ایران بالغ بر50000 رشته برآورده شده است. جالب توجه است که این قنات های متعدد، طویل و عمیق با وسایل بسیار ابتدایی حفر شده اند.

رومی ها نیز در ساخت قنات‌ها و همچنین در حفاری تونل های راه پرکار بودند. آنها در ضمن اولین دوربینهای مهندسی اولیه را در جهت کنترل تراز وحفاری تونل ها به کار بردند.

اهمیت احداث تونل ها دردوران های قدیم ، تا بدین جاست که کارشناسان کارهای احداث تونل درآن تمدن‌ها را نشانگر رشد فرهنگ و به ویژه رشد تکنیکی و توان اقتصادی آن جامعه دانسته‌اند. تمدنهای اولیه به سرعت ، به اهمیت تونل‌ها ، به عنوان راه‌های دسترسی به کانی ها و مواد طبیعی نظیر سنگ چخماق به واسطه اهمیتش برای زندگی، پی‌بردند. همچنین کاربرد آنها دامنه گسترده‌ای از طاق زدن بر روی قبرها تا انتقال آب و یا گذرگاههایی جهت رفت و آمد را شامل می شد. کاربردهای نظامی تونل‌ها ، به ویژه از جهت بالابردن توان گریز یا راههایی جهت یورش به قرارگاهها و قلعه های دشمن ، ازدیگر جنبه های مهم کاربرد تونلها در تمدن های اولیه بود.

تونل سازی همزمان با انقلاب صنعتی، به ویژه به منظور حمل و نقل ، تحرک قابل ملاحظه ای یافت. تونلسازی به گسترش و پیشرفت کانال سازی کمک کرد و این امر در توسعه صنعت به ویژه در قرون 18 و 19 میلادی در انگلستان سهم بسزایی داشت. کانال‌ها یکی از پایه های انقلاب صنعتی بودند وتوانستند در مقیاس بسیار بزرگ هزینه‌های حمل و نقل را کاهش دهند. تونل مال پاس با طول 157 متر برروی کانال دومیدی در جنوب فرانسه اولین تونلی بود که در دوره‌های مدرن در سال 1681 ساخته شد. همچنین اولین تونل ساخته شده با کاربرد حفاری و انفجار باروت بود. در انگلستان، قرن 18 نیز جیمز بریندلی از خانواده ای مزرعه دار با نظارت بر طراحی و ساخت بیش از 580 کیلومتر کانال و تعدادی تونل به عنوان پدر کانال و تونل های کانالی ملقب شد. وی در سال 1759 با ساخت یک کانال به طول 16 کیلومتر مجموعه معدن زغال دوک بریدجواتر را به شهر منچستر متصل نمود. اثر اقتصادی تکمیل این کانال نصف شدن قیمت زغال در شهر و ایجاد یک انحصار واقعی برای معدن مذکور بود.

در اوایل قرن نوزدهم به منظور عبور از قسمتهای پایین دست رودخانه تایمز هیچ سازه ای موجود نبود و 3700 عابر مجبور بودند با طی یک راه انحرافی 3 کیلو متری با قایق مسیر روترهایت به ویپنیگ را طی کنند. اقدام به ساخت یک تونل نیز به دلیل ریزشی بودن ومناسب نبودن رسوبات کف رودخانه متوقف شد. تا اینکه در حدود سال 1820 فردی بنام مارک ایرامبارد برونل از فرانسه ایده استفاده از سپر را مطرح نمود و در سال 1825 کار احداث تونل بین روترهایت و ویپنیگ را آغاز و علی رغم جاری شدن چند نوبت سیل در سال 1843 آن را باز گشایی نمود. این تونل تامس نام گرفته و اولین تونل زیر آبی بود که بدون هر گونه رودخانه انحرافی حفر شد.

در دیگر موارد تونلهای زهکشی بزرگ ، نظیر تونلی با طول 7 کیلو متر در هیل کارن انگلستان ، اهمیت زیادی در توسعه صنعت معدنکاری داشته‌اند. البته بررسی تاریخچه پیشرفت در روش ها و تکنیک ها و به عبارتی در هنر تونل سازی نشانگر این مطلب است که مانند بسیاری دیگر از علوم و فنون بیشتر رشد این هنردر قرن گذشته صورت گرفته و تا حال نیز ادامه دارد.

 

ویژگی های فضاهای زیرزمینی و نمونه های بارز آنها

هم اکنون در زمینه های مختلف کاربرد تونل‌ها ، مزایای متفاوت و گوناگونی را بر می شمرند. از آن جمله ویلت، استفاده فزاینده فعلی از فضاهای زیر زمینی را به دلایل زیر رو به افزایش دانسته است.

1- تفوق محیط ساختاری به معنای وجود یک حصار وساختار طبیعی فراگیر.

2-عایق سازی با سنگهای فراگیر که دارای ویژگیهای عالی عایق‌ها می باشند.

3- محدودیت کمتر دراحداث سازه های بزرگ به دلیل نیاز کمتر به استفاده از وسایل نگهداری عمده در مقایسه با احداث همان سازه بر روی سطح زمین.

4- کمتر بودن تأثیرات منفی زیست محیطی.

 

از دیگر مزایای تونل ها در راههای ارتباطی می توان به :

1- کوتاهتر شدن مسیرها و افزایش راند مان ترافیکی

2-بهبود مشخصات هندسی مسیر

3-جلوگیری از خطرات ریزش کوه و بهمن

4-ایمنی بیشتر در برابر زلزله،

اشاره کرد .

 

مثال های متعددی می توان از نقش وتأثیر عمده تونلسازی و پروژه های بزرگ این صنعت از گذشته تا حال ذکر کرد . تونل مشهور مونت بلان دو کشور فرانسه و ایتالیا را به هم متصل می


دانلود با لینک مستقیم


دانلود تحقیق درباره تونل سازی