هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق طراحی فرایندهای تولید شیمیایی

اختصاصی از هایدی تحقیق طراحی فرایندهای تولید شیمیایی دانلود با لینک مستقیم و پر سرعت .

تحقیق طراحی فرایندهای تولید شیمیایی


تحقیق طراحی فرایندهای تولید شیمیایی

فایل : word

قابل ویرایش و آماده چاپ

تعداد صفحه :63

  1. 1 مقدمه

این فصل مقدمه ای است برای چگونگی و روش فرایند طراحی و کاربرد آن برای طراحی فرایندهای تولید شیمیایی.

  1. 2 چگونگی طراحی Nature of design

در این بخش مبحثی کلی از فرایند طرلحی ارائه میشود.موضوع این کتاب طراحی مهندسی شیمی است،اما روش توصیف شده در این بخش میتواند برای سایر شاخه های مهندسی کاربرد بیابد.

مهندسی شیمی،بطور مستمر یکی از حرفه های مهندسی بسیار مورد توجه بوده است در قسمت های مختلف صنعت،همچون صنایع......فرآوری همچون:مواد شیمیایی،پلیمرها،سوختها،مواد غذایی،داروسازی،کاغذ سازی و نیز بخش های دیگری همچون مواد و لوازم الکترونیکی،محصولات مصرفی،استخراج معادن و فلزات،القاو بیو درمانی و تولید برق همیشه مهتدسان شیمی مورد نیاز بوده است.

دلیل اینکه شرکتهای موجود در چنین دامنه ی گسترده ای از صنعت،اینچنین نیازمند به مهندسین شیمی هستند،چنین است:

مهندسین شیمی با پرداختن به مسائلی که دقیقاً تفهیم نشده اند،همچون نیاز مصرف کننده یا مجموعه ای از نتایج آزمایشی،قادر به دستیابی به ادراکی از علوم فیزیکی زیربنایی مهم مربوط به مسئله و استفاده از این ادراک برای طراحی برنامه عمل و مجموعه ای کامل از شرایط میشوند که در صورت اجراء منتهی به نتایج مالی پیش بینی شده ای میشوند.

طراحی و خلق برنامه ها و شرایط و پیش بینی نتایج مالی،در ضورت اجرای برنامه،فعالییت و عمل طراحی مهندسی شیمی میباشد.


دانلود با لینک مستقیم


تحقیق طراحی فرایندهای تولید شیمیایی

دانلود تحقیق فرایندهای حالت ناپایدار وانبوه

اختصاصی از هایدی دانلود تحقیق فرایندهای حالت ناپایدار وانبوه دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق فرایندهای حالت ناپایدار وانبوه


دانلود تحقیق فرایندهای حالت ناپایدار وانبوه

 فرآیندهای حالت ناپایدار آنهایی هستند که در آنها جریان گرما، دما و یا هر دو در یک نقطة ثابت با زمان تغییر می کنند. فرآیندهای انتقال حرارت انبوه فرآیندهای حالت ناپایدار نمونه ای هستند که در آنها تغییرات حرارت ناپیوسته ای رخ می دهند همراه با مقادیر خاصی از ماده در هنگام گرم کردن مقدار داده شده ای از مایع در یک تانک یا در هنگامی که یک کورة سرد به کار افتاده است.

همچنین مسائل رایج دیگری نیز وجود دارند که مثلاً شامل می شوند بر نرخی که حرارت از میان یک ماده به روشی رسانایی انتقال می یابد در حالی که دمای منبع گرما تغییر می کند. تغییرات متناوب روزانة حرارت خورشید بر اشیاء مختلف یا سرد کردن فولاد در یک حمام روغن نمونه راههایی از فرآیند اخیر هستند. سایر تجهیزاتی که بر اساس روی خصوصیات حالتی ناپایدار ساخته شده اند شامل کوره های دوباره به وجود آورنده(اصلاحی) که در صنعت فولاد استفاده می شوند، گرم کنندة دانه ای(ریگی) و تجهیزاتی که در فرآیندهای بکار گیرندة کاتالیست دمای ثابت یا متغیر به کار می روند هستند.

در فرآیندهای کلان برای گرم کردن مایعات نیازمندیهای زمانی برای انتقال حرارت معمولاً می توانند بوسیلة افزایش چرخة سیال کلان و یا واسطة انتقال حرارت و یا هر دو  اصلاح شوند.

دلایل به کار گرفتن یک فرآیند کلان به جای به کارگیری دیگ عملیات انتقال حرارت پیوسته بوسیلة عوامل زیادی دیکته می شوند:

بعضی از دلایل رایج عبارتند از 1) مایعی که مورد فرآیند قرار می گیرد به صورت پیوسته در دسترس نیست 2) واسط گرم کردن یا سرد کردن به طور پیوسته در دسترس نیست 3)نیازمندیهای زمان واکنش یا زمان عملکرد متوقف شدن را ضروری می سازد 4) مسائل اقتصادی مربوط به مورد فرآیند قرار دادن متناوب یک حجم وسیع، ذخیره یک جریان کوچک پیوسته را توجیه می کند 5)تمیز کردن و یا دوباره راه‌اندازی کردن یک بخش برای دورة کاری است و 6)عملکرد سادة بیشتر فرآیندهای کلان سودمند و خوب است.

به منظور مطالعه کردن منظم و با قاعدة رایج ترین کابردهای فرآیندهای انتقال حرارت حالت ناپایدار و کلان ترجیح داده می شود که فرآیندها را به دسته های (aمایع (سیال) گرما دهنده یا خنک کننده و  b) جامد خنک کننده یا گرم کننده تقسیم کنیم.

رایج ترین نمونه ها در ذیل آورده شده اند:

1)مایعات سرد کننده و گرم کننده

a) مایعات کلان       b)تقطیر کلان

2)جامدات خنک کننده یا گرم کننده

a)دمای واسط ثابت b)دمای متغیر دوره ای  c)دوباره تولید کننده ها(ژنراتورها)

d)مواد دانه ای در بسته ها

مایعات سرد کننده و گرم کننده

1) دمای مایع انبوه

بومی، مولر و ناگل رابطه ای برای زمان مورد نیاز را برای گرم کردن یک تودة تکان داده شده بوسیلة غوطه ورسازی یک کویل گرم کننده بدست آورده اند که برای زمان است که اختلاف دما معادل LMTD (اختلاف دمای میانی لگاریتمی) برای جریان روبه رو داده شده باشد.

فیشر محاسبات انبوه را گسترش داده است برای شامل شدن یک جدول خارجی جریان مقابل، چادوک و سادرنر حجم های تکان داده شده را مورد بررسی قرار داده اند که با مبدل های خارجی جریان مقابل همراه با اضافه سازی پیوستة مایع به تانک گرم شده اند همچنین به میزان حرارت در این راه حل پرداخته اند.

بعضی از روابطی که به دنبال می آیند برای کویل ها در تانک ها و محفظه های پوشانده شده به کار می روند. اگرچه روش بدست آوردن ضرائب انتقال حرارت برای این اجزاء تا فصل 20 به تعویق انداخته شده است.

تشخیص دادن حضور یا عدم حضور تکان در یک مایع کلان همیشه امکانپذیر نیست. گرچه دو مقدمة فوق منجر به نیازمندیهای متفاوتی برای نائل شدن به یک تغییر دمای کلان در یک دورة زمانی داده شده می شوند.

زمانی که یک محرک مکانیکی در یک تانک یا محفظه همانند شکل 1.‌18 نصب می‌شود نیازی به این پرسش که سیال تانک تکان داده شده یا نه نیست. 

زمانی که محرک مکانیکی وجود ندارد ولی سیال به طور پیوسته در حال گردش است ما نتیجة این که حجم تکان داده شده است یک نوع احتیاط و دوراندیشی است.

در بدست آوردن معادلات کلان در ذیل T به مایع داغ انبوه یا واسط گرم کردن اشاره می کند. t به مایع سرد انبوه یا واسط خنک سازی اشاره دارد. موارد ذیل در این جا مورد بررسی قرار می گیرند.

حجم های خنک سازی یا گرم سازی متلاطم جریان متقابل

  • کویل در تانک یا محفظة پوشانده شده، واسط ایزوترمال
  • کویل در تانک یا محفظة پوشانده شده، واسط غیر ایزوترمال
  • مبدل خارجی، واسط ایزوترمال
  • مبدل خارجی، واسط غیر ایزوترمال
  • مبدل خارجی مایع پیوسته اضافه شده به تانک، واسط ایزوترمال
  • مبدل خارجی مایع پیوسته اضافه شده به تانک، واسط غیر ایزوترمال

حجم های خنک ساز یا گرم کننده متلاطم، جریان متقابل موازی

مبدل 2-1 خارجی

مبدل 2-1 خارجی، مایع تدریجاً اضافه شده به تانک

مبدل 4-2 خارجی

مبدل 4-2 خارجی، مایع تدریجاً اضافه شده به تانک

حجم های گرم ساز و خنک کننده بدون تکان دهی

مبدل جریان مقابل خارجی، واسط ایزوترمال

مبدل جریان مقابل خارجی، واسط غیر ایزوترمال

مبدل  2-1 خارجی

مبدل  4-2 خارجی

حجم های تکان داده  شده خنک ساز و گرم کن

چندین راه برای در نظر گرفتن فرآیندهای انتقال حرارت کلان وجود دارد. اگر تکمیل کردن یک عملکرد معین در زمان داده شده مطلوب باشد، سطح مورد نیاز معمولاً مجهول است. اگر سطح انتقال حرارت معلوم است، مانند نصب فعلی زمان مورد نیاز برای تکمیل کردن عملکرد معمولاً نامعین است و یک حالت سوم زمان پیش می آید که زمان و سطح هر دو معلوم هستند ولی دما در پایان زمان مورد نظر مجهول است. فرضیات زیرین در بدست آوردن معادلات 1/18 تا 23/18 در نظر گرفته شده اند:

1)برای فرآیند و تمام سطح ثابت است

2)نرخهای جریان مایع ثابت هستند

3)گرماهای ویژه برای فرآیند ثابت هستند

4)واسط گرم سازی یا خنک سازی یک دمای ورودی ثابت دارد

5)تکان دهنده یک دمای سیال انبوه  یکسان و یکنواخت فراهم می کند.

6)هیچ گونه تغییر فاز جزیی رخ نمی دهد

7)تلفات گرمایی قابل اغماض هستند.

حجم های تکان داده شدة خنک ساز یا گرم کنندة جریان متقابل

  • کویل در تانک یا محفظة پوشانده شده واسط گرم کننده ایزوترمال

ترتیب نشان داده شده در شکل 1/18 را در نظر بگیرید، شامل یک محفظة تکان داده شده شامل M پوند از مایع با گرمای ویژة c و دمای اولیة  که بوسیلة یک سیال متراکم شوندة با دمای  گرم می شود. دمای batch،  در هر زمان  بوسیلة تعادل گرمایی دیفرانسیلی داده می شود. اگر  مقدار کل btu انتقال یافته است در این صورت به ازای واحد زمان

18/4                

با انتگرال گیری از  تا  در هنگامی که زمان اثر به  می رسد،

18/5                

کاربرد یک رابطه مانند 5/18 نیازمند محاسبة مستقل V برای کویل یا محفظة پوشانده شده همانند فصل 20 است فصل 20 است. با Q و A ثابت بوسیلة شرایط فرآیند زمان گرم سازی مورد نیاز می تواند محاسبه شود.

کویل در تانک یا محفظة پوشانده شده، واسطه خنک سازی ایزوترمال

مسائل این نوع معمولاً در فرآیند دمای پایین رخ می دهد که در آنها واسط خنک کننده یک مبرد است که به جزء خشک سازی در دمای جوش ایزوترمالش تغذیه می‌شود. مطابق با همان ترتیب نشان داده شده در شکل 1/18 شامل M پوند از مایع با گرمای ویژة C و دمای اولیة  که با یک واسط بخار شونده با دمای  خنک می شود اگر  دمای توده در هر زمان  باشد.

18/6            

18/7                

کویل در تانک یا محفظة پوشانده شده، واسط گرم ساز غیر ازوترمال

واسط غیر ایزوترمال گرم کننده برج جریان ثابت W و دمای ورودی  دارد ولی دمای خروجی متغیر است.

18/8         

قرار می گذاریم که   و با دمای پنداشتی a و b را معادلة 8/18 در این I

18/9            

کویل در تانک، واسط خنک ساز غیر ایزوترمال

18/10        

18/11            

مبدل حرارت خارجی، واسط گرم کنندة ایزوترمال

ترتیب شکل 2/18 را در نظر بگیرید در آن سیال بوسیلة یک مبدل خارجی گرم می‌شود. از آنجایی که واسط گرم کننده ایزوترمال است، هر نوع مبدل با بخار در پوسته یا لوله می تواند به کار برده شود. امتیازات گردش اجباری برای هر دوره این ترتیب را پیشنهاد می کند.

دمای متغیر بیرون از مبدل  از دمای متغیر تانک t متمایز است و تعادل گرای دیفرانسیلی برای این وسیله داده می شود:

18/12            

با فرض

مبدل بیرونی، واسط خنک کنندة ایزوترمال

18/14            

در مبدل بیرونی، مبدل گرماساز غیر ایزوترمال، تعادل حرارت دیفرانسیلی بدین وسیله داده می شود.

18/15        

دو دمای متغیر  و  وجود دارند که در LMTD ظاهر می شوند که باید در ابتدا حذف شوند.

با معادل گرفتن a و b در معادله 15/18

اجازه دهید که   باشد و

مبدل خارجی محل خنک کنندة غیر ایزوترمال

مبدل خارجی، مایع تدریجاً اضافه شده به تانک، واسط گرم کنندة ایزوترمال، اجزای فرآیند در شکل 3/18 نشان داده شده اند، مایع تدریجاً با نرخ  و سرمای ثابت  به تانک اضافه می شود فرض شده است که هیچگونه تأثیرات حرارتی شیمیایی همراه با اضافه سازی آب به تانک وجود ندارد.

از آنجا که M پوند مایع ابتدایی در توده  میزان پوند در ساعت است، مقدار مایع کلی در هر زمان  است. تعادل گرمایی و دیفرانسیلی به این صورت خواهد بود.

شامل 308 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود تحقیق فرایندهای حالت ناپایدار وانبوه

سمینار کارشناسی ارشد شیمی فرایندهای غشایی کلر آلکالی

اختصاصی از هایدی سمینار کارشناسی ارشد شیمی فرایندهای غشایی کلر آلکالی دانلود با لینک مستقیم و پر سرعت .

سمینار کارشناسی ارشد شیمی فرایندهای غشایی کلر آلکالی


سمینار کارشناسی ارشد شیمی فرایندهای غشایی کلر آلکالی

این محصول در قالب پی دی اف و 128 صفحه می باشد.

این سمینار جهت ارائه در مقطع کارشناسی ارشد شیمی-طراحی فرآیند های نفتی طراحی و تدوین گردیده است. و شامل کلیه موارد مورد نیاز سمینار ارشد این رشته می باشد. نمونه های مشابه این عنوان با قیمت بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این سمینار را با قیمت ناچیز جهت استفاده دانشجویان عزیز در رابطه به منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالا بردن سطح علمی شما در این سایت قرار گرفته است.

چکیده:

 

نظر به ویژگی های منحصر به فرد غشاهای تبادل یونی به ویژه در فرآیند غشایی تولید کلرآلکالی

و نیز اهمیت فنی و اقتصادی این غشاها مطالعه اولیه ای در زمینه شناخت غشاهای تبادل یونی

انجام دادم .

در این تحقیق ضمن معرفی آیونومرها و غشاهای تبادل یونی به ویژه پرفلئورینه و تعیین خواص

و نقش آنها در صنعت کلرآلکالی ، انواع غشاهای تجاری موجود در بازار معرفی و مورد بررسی

قرارگرفته است .مدل های ساختمانی و مورفلولوژی غشاهای پرفلئورینه به همراه اصول و مکانیزم

انتقال یون از درون غشا ارائه گردیده است .

مدل های شبکه خوشه ای و سه فاز توانایی توضیح نسبی خواص و قابلیت انتخاب پلیمر را دارا

می باشند . خواص مهم غشاهای تبادل یونی پرفلئورینه همچون گنجایش آب،ظرفیت تبادل یونی

،راندمان جریان ، هدایت الکتریکی،خواص مکانیکی و غیره تعریف و مورد بررسی قرارگرفته است

،نیز روشهای اندازه گیری این خواص ارائه گردیده است .

در این تحقیق ضمن ارائه تاریخچه ای از صنعت کلرآلکالی انواع سل های مورداستفاده توصیف شده

، در ادامه مزایا و معایب غشاهای تبادل یونی و به طور کلی انتظاراتی که از غشاهای کلرآلکالی داریم

بیان شده است .در ادامه نیم نگاهی نیز به غشاهای تبادل یونی در صنعت ، چگونگی مراقبت از الکترو

لایزرها و انواع تست های مربوط به غشا در قبل و بعد از را اندازی شده است . علل راه اندازی سل با

آب نمک قلیایی ، علل پاره شدن غشا و نشانه های آن و چگونگی تعمیر انها نیز ذکر شده است . در انتها

نیز نکاتی در مورد چگونگی نگهداری و مراقبت از غشا از زمان تولید تا هنگام نصب ذکر گردیده است .

به واسطه نقش کلیدی غشا د رفرایند کلر آلکالی تحقیق هر چه بیشتر در زمینه غشا و البته تلاش برای

ساخت غشا در کشور اهمیت زیادی می یابد زیرا صنعت کلر آلکالی غشایی در صنایع پتروشیمی در جهان

در حال گسترش بوده و در نتیجه احتمال تبدیل واحد های جیوه ی به غشایی در آینده زیاد است .


دانلود با لینک مستقیم


سمینار کارشناسی ارشد شیمی فرایندهای غشایی کلر آلکالی

دانلود تحقیق تحت عنوان انواع فرایندهای پیشرفته و مدرن PVD در قالب word در 33 صفحه

اختصاصی از هایدی دانلود تحقیق تحت عنوان انواع فرایندهای پیشرفته و مدرن PVD در قالب word در 33 صفحه دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تحت عنوان انواع فرایندهای پیشرفته و مدرن PVD در قالب word در 33 صفحه


دانلود تحقیق تحت عنوان انواع فرایندهای پیشرفته و مدرن PVD در قالب word در 33 صفحه

انواع فرایندهای پیشرفته و مدرن PVD :

  • رسوبدهی از طریق تبخیرسازی سطحی (Evaporation deposition) :

 فرایندی است که در آن مواد ابتدا به وسیله یک قطعه مقاومت الکتریکی تحت شرایط خلاء کم حرارت داده شده سپس بر روی یک زیرپایه رسوب داده می شوند.

  • رسوبدهی فیزیکی بخار توسط اشعه الکترونی (Electron beam pvd) :

 فرایندی که در آن مواد جهت رسوب دهی بایستی ابتدا به وسیله یک منبع تحت شرایط خلا زیاد بمباران الکترونی شده و تحت فشار بخار زیاد تبخیر شوند.

  • رسوبدهی توسط کاتدپرانی (Sputter depestion) :

 در این فرایند یک محیط پلاسمای گرم و پر انرژی و خنثی مواد هدف را بمباران کرده و تبخیر می شوند.

  • رسوبدهی به وسیله قوس کاتدی (cathodic Arc vapor deposition) :

 فرایندی که در آن مواد پوسته هدف به وسیله یک قوس الکتریکی مستقیم و پر انرژی به حالت بخار تبدیل در می آیند .

هریک از فرایندهای بالا به طور جداگانه و به طور مفصل در قسمت های بعد توضیح داده خواهد شد ولی قبل از آن لازم است که درباره فرایندهای پوشش دهی سطح و عوامل مؤثر برآن توضیحاتی داده شود.

 فرایندهای سطحی :

این فرایند شامل تغییر دادن خواص سطح و مناطق نزدیک سطح می باشد که می تواند توسط فرایند روکش کاری یا فرایند ترمیم سطحی انجام شود.

در فرایند پوشش دهی یک ماده بر سطح اضافه می شود و روی سطح را کاملاً می پوشاند به طوری که سطح اولیه دیگر قابل رویت نمی باشد. اما در فرایند ترمیم سطحی، خواص سطح تغییر می کند اما ماده اولیه سطح هنوز بر روی سطح وجود دارد.

هر فرایندی مزایا، معایب و کاربردهای خاص خود را دارا می باشد. در بعضی موارد فرایند ترمیم سطحی می تواند جهت ترمیم و بهبود سطح زیرپایه مورد استفاده قرار گیرد قبل از اینکه بخواهیم فرایند رسوبدهی و پوشش دهی بر روی سطح را شروع کنیم. به عنوان مثال سطح یک فولاد می تواند به وسیله محیط پلاسما نیتروژن سخت شود قبل از اینکه توسط فرایند PVD یک رسوب سخت بر روی آن ایجاد شود.

گاهی اوقات فرایند ترمیم و بهبود سطح می تواند پس از انجام فرایند رسوبدهی جهت تغییر خواص و ویژگی های پوشش ایجاد شده مورد استفاده قرار گیرد. برای مثال خواص مکانیکی پوشش های ایجاد شده توسط فرایند کاتدپرانی بر روی سطح پره توربین یک هواپیما را می توان توسط فرایند ساچمه زنی بهبود بخشید و شدن پوشش و دانسیته آنها را افزایش داد. فرایند رسوبدهی فیلم ها و لایه ها به صورت اتمی فرایندی است که در آن مواد تبخیر شده اتم به اتم بر روی سطح مورد نظر رسوب داده می شوند.

لایه های به دست آمده می تواند از محدوده تک کریستال تا آمورف، کاملاً متراکم تا کمی متراکم، خالص تا ناخالص و نازک تا ضخیم تغییر کند .

معمولاً واژه لایه های نازک برای لایه هایی به کار برده می شود که ضخامتی در حدود یک نانومتر تا چند میکرون داشته باشند و می تواند به نازکی لایه های چند اتمی باشد.

قطعات نیمه هادی الکترونیکی و پوشش های نوری، اصلی ترین کاربردهای سودمند این لایه ها می باشد .

در اغلب موارد، خواص این لایه ها توسط مواد زیر پایه تحت تأثیر قرار می گیرد و این خواص می تواند در سر تا سر ضخامت لایه تغییر کند. لایه های با ضخامت بیشتر معمولاً روکش نامیده می شوند. فرایندهای رسوبدهی اتمی می تواند در یک محیط خلا، پلاسما، گازی یا الکترولیتی انجام گیرد .

فرایندهای PVD که اغلب فرایندهای فیلم نازک نامیده می شوند جز فرایندهای رسوبدهی اتمی می باشند که در آن مواد از یک منبع مایع یا جامد بخار شده و به شکل بخار از طریق یک محیط خلاء یا محیط با گازهای کم فشار (پلاسما) به سمت یک زیرپایه انتقال یافته و بر روی آن رسوب داده شده و متراکم می شوند. در بعضی از منابع آورده شده که این فرایند جز فرایندهای رسوبدهی مولکولی یا یونی نیز می باشد .

به طور نمونه فرایندهای PVD برای رسوب فیلم های با ضخامت در حدود چند نانومتر تا هزار نانومتر به کار برده می شوند اگرچه می توان از آنها برای تشکیل پوشش های چند لایه ای، رسوبدهی لایه هایی از جنس ترکیب زیرپایه و رسوب های بسیار ضخیم نیز استفاده کرد.

اندازه زیرپایه می تواند کوچک یا بزرگ باشد و شکل آنها نیز می تواند به صورت ساده یا پیچیده تغییر کند. سرعت رسوبدهی در فرایند PVD از 100- 10 آنگستروم بر ثانیه متغیر می باشد .

فرایندهای PVD در واقع یک فرایند جایگزین روش آبکاری می باشد و از جهاتی شبیه به فرایند CVD می باشد اما نسبت به آن مزایا و معایبی دارد .

در فرایندهای CVD رشد لایه ها در دماهای بالا رخ می دهد که منجر به تشکیل محصولات گازی خورنده می شود و ممکن است باعث ایجاد ناخالص در لایه های پوشش داده شده گردد اما فرایندهای PVD می تواند در دماهای رسوبدهی پایین تر و بدون ایجاد محصولات خورنده و ناخالص در لایه ها انجام گیرد ولی سرعت رسوبدهی آن پایین است و باعث ایجاد تنش های پس ماند فشاری در لایه ها خواهد شد .

روش های رسوب فیزیکی بخار :

انواع روش های رسوب فیزیکی بخار  (Physical Vapor Deposition Techniques)

به دو روش عمده انجام می گیرند که عبارتند از:

 - تبخیر (Evaporation)

 - کندوپاش (Sputtering)

ساده‌ترین روش تبخیر، استفاده از گرمایش مقاومتی است. در این روش، منبع، گرم‌تر از زیرپایه است و مواد از منبع تبخیر شده و روی زیرپایه سردتر متراکم می ‌شوند. در این مورد باید نکاتی رعایت شوند که عبارتند از:

1- ماده اولیه باید به فشار بخار مطلوبی برسد.

2- ترکیب بخار تولید شده باید طبق فرمول شیمیایی ترکیب نشانده شده روی زیرپایه، تنظیم شود.

3- بخار تولید شده به زیرپایه بچسبد.

شکل روبرو طرح ساده‌ای از  دستگاه PVD است. صفحه‌ای با قطر 20 cm تقریبا در 20 cm منبع تبخیر قرار دارد. سرعت رشد فیلم نازک از فرمول زیر به‌ دست می‌ آید:

 

:m سرعت تبخیر (g/s)

ρ: چگالی بخار

r: فاصله زیرپایه از منبع cm

Φ: زاویه منبع تا خط عمود بر زیرپایه

 اگر تحت چنین شرایطی فیلم نازکی با ضخامت 10μm نشانده شود، ضخامت لبه‌ های فیلم 9μm است. در واقع فیلم غیریکنواختی ایجاد می‌ شود. این پدیده ناشی از هندسه دستگاه است. می‌ توان برای تهیه فیلم یکنواخت، سطح فیلم مورد نظر را به‌ صورت کره‌ ای بزرگ تغییر داد. در این صورت کسینوس معادله فوق، به شکل r/2r0 تغییر می‌کند و r0 برابر با شعاع کره است. همچنین برای تهیه فیلم یکنواخت‌تر، می‌ توان از زیرپایه چرخان استفاده کرد.

به دلیل ساده بودن این روش، هنوز به عنوان یک روش معمولی مورد استفاده قرار می ‌گیرد. از مزایای دیگر این روش می ‌توان به سرعت بالای رسوب و نیز سرد بودن زیرپایه اشاره کرد. به دلیل سرد بودن زیرپایه می ‌توان فیلم نازک را روی زیرپایه پلیمری آلی نشاند. فرآیند متراکم کردن باید در خلا بالا انجام شود تا از انجام واکنش شیمیایی جلوگیری شود. همچنین فیلمی با درصد خلوص بالاتری ایجاد می ‌شود.

اگر نتوان با استفاده از روش گرمایش مقاومتی ماده موردنظر را تبخیر کرد، می‌ توان از منابع گرمایی دیگر مانند باریکه الکترونی استفاده کرد. در نشست فیزیکی بخار با استفاده از باریکه الکترونی (EB-PVD) به‌طور مستقیم یک باریکه پرقدرت الکترونی (~20kv، ~500mA) به ‌عنوان منبع گرمایی استفاده می ‌شود.


دانلود با لینک مستقیم


دانلود تحقیق تحت عنوان انواع فرایندهای پیشرفته و مدرن PVD در قالب word در 33 صفحه

مقاله فرایندهای جوشکاری با قوس الکتریکی

اختصاصی از هایدی مقاله فرایندهای جوشکاری با قوس الکتریکی دانلود با لینک مستقیم و پر سرعت .

مقاله فرایندهای جوشکاری با قوس الکتریکی


مقاله فرایندهای جوشکاری با قوس الکتریکی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:13

فهرست و توضیحات:

فرایندهای جوشکاری با قوس الکتریکی

فرایندهای جوشکاری مقاومتی

جوش نقطه‌ای

درز جوشی

جوش تکمه‌ای

فرایندهای جوشکاری حالت جامد

جوشکاری اصطکاکی

جوشکاری نفوذی

جوشکاری با امواج مافوق صوت

 

ثابت شده‌است که فلزات در دمای اتاق هم قابل اتصالند . این عمل توسط ایجاد پیوندهای فلزی در دو سطح مورد اتصال ، انجام می‌گیرد . بطور ایده آل ، تشکیل اتصال فلزی بوسیلهٔ جوشکاری سرد ، و یا پیوند ( Bonding ) بطریق زیر متصور است : دو قطعهٔ بسیار صیقلی و تمیز در اختیار است . هرکدام از ایندو، مجموعه‌ای از بارهای (+) و (-) می‌باشد به گونه‌ای که هر قطعه بدون عیب و با استحکام کافی دارای پایداری است . اگر دو قطعه کاملاً نزدیک هم قرار گرفته و به هم بچسبند ، الکترونهای فرار از هر قطعه ، بین آندو مشترک می‌شود و در نتیجه نیروی عکس العمل بین سطوح زیاد می‌گردد . بنابراین وقتی دو سطح تماس کامل داشته باشند ، نیروهای عکس العملی بین اتمها ، خودبه خود زیاد شده و یک اتصال محکم و قدرتمند بوجود می‌آید . ولی در عمل ، یک فلز هرگز صیقل کامل نمی‌خورد و همواره اعجاج ماکروسکوپی در سطح دارد. [ ultra Mic or Macroscopic] و همین ناهمواریها ، مساحت واقعی تماس را چند برابر مقدار واقعی می‌کند . بدلیل وجود نقاط ناهموار میکروسکوپی ، لایه‌های سطحی فلز دارای انرژی سطحی قابل ملاحظه‌ای در اثر پیوندهای فلزی اشباع نشده ، جاهای خالی و نیز نابجائی‌ها Vacancies & Dislocations می‌باشد . بنابراین عکس العمل‌های شدیدی بین انتهای سطح فلز و محیط


دانلود با لینک مستقیم


مقاله فرایندهای جوشکاری با قوس الکتریکی