هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله شبیه سازی رآکتور سنتز متانول

اختصاصی از هایدی مقاله شبیه سازی رآکتور سنتز متانول دانلود با لینک مستقیم و پر سرعت .

مقاله شبیه سازی رآکتور سنتز متانول


مقاله شبیه سازی رآکتور سنتز متانول

 مقاله شبیه سازی رآکتور سنتز متانول

 

projeha.net بزرگترین سایت دانلود پروژه و مقالات دانشجویی

مقاله شبیه سازی رآکتور سنتز متانول مربوطه  به صورت فایل ورد  word و قابل ویرایش می باشد و دارای ۷۲  صفحه است . بلافاصله بعد از پرداخت و خرید لینک دانلود مقاله شبیه سازی رآکتور سنتز متانول نمایش داده می شود، علاوه بر آن لینک مقاله مربوطه به ایمیل شما نیز ارسال می گردد

 فهرست

فصل اول :متانول ،خواص و روشهای تولید. ۱

۱-۱-تاریخچه [۱] ۱

۱- ۲- خصوصیات فیزیکی Physical properties [1] 3

1-3-  واکنشهای شیمیایی [۱] ۴

۱-۴- تولید صنعتی و فرآیند آن [۱] ۴

۱-۵-ماده خام [۱] ۹

۱-۵-۱-گاز طبیعی [۱] ۹

۱-۵-۲-باقیمانده های نفتی [۱] ۱۲

۱-۵-۳-نفتا [۱] ۱۴

۱-۵-۴-ذغال سنگ [۱] ۱۵

۱-۶-کاتالیست [۱] ۱۵

۱-۷-تولید در مقیاس تجاری [۱] ۱۵

۱-۸-واکنشهای جانبی [۱] ۱۶

۱-۹-خالص سازی [۱] ۱۷

۱-۱۰-کاربردهای متانول: [۴] ۱۸

۱-۱۰-۱-۱- تولید اسید استیک: ۱۹

۱-۱۰-۱-۲-کاربرد اسید استیک در صنایع: ۲۰

۱-۱۰-۲-تولید وینیل استات: ۲۰

۱-۱۰-۳-فرمالدئید: ۲۱

۱-۱۰-۴-اتیلن گلیکول: ۲۱

۱-۱۰-۵-متیل آمین: ۲۱

۱-۱۰-۶-دی متیل اتر: ۲۲

۱-۱۰-۷- ترکیبات کلرومتان : ۲۲

۱-۱۰-۸-متیل ترشری بوتیل الکل(MTBE). 23

1-10-9-کاربرد متانول در مخلوط با بنزین: ۲۵

فصل دوم: سینتیک و مکانیسم واستوکیومتری[۲] ۲۷

۲-۱-اصول واکنشهای کاتالیستی.. ۲۷

۲-۱-۱-مراحل مستقل در واکنشهای کاتالیستی.. ۲۷

۲-۱-۲-سینیتیک ومکانیسم واکنشهای کاتالیستی.. ۳۰

۲-۱-۳-اهمیت جذب سطحی در واکنشهای کاتالیستی هتروژن.. ۳۱

۲-۱-۴-بررسی سینتیکی.. ۳۷

۲-۱-۵-مکانیسم واکنشهای کاتالیستی هتروژن فاز گاز. ۳۹

۲-۱-۵-۱-مکانیسم Langmuir- Hinshelwood (1421 ). 39

2-1-5-2-مکانیسم Eley –Rideal 42

2-2-ترمودینامیک و سینتیک سنتز فشار پائین متانول[۳] ۴۳

۲-۲-۱-مقدمه. ۴۴

۲-۲-۲-استوکیومتری و ترمودینامیک… ۴۴

۲-۲-۳-سینتیک و مکانیسم. ۴۸

۲-۲-۴-مکانیسم. ۵۳

فصل سوم: شبیه سازی واکنش کاتالیستی هتروژنی توسط Hysys 56

3-1- مدل سینتیکی[۵] ۵۶

۳-۲-مراحل شبیه سازی رآکتور در Hysys [5] 58

3-تعریف واکنش… ۵۹

۴-مراحل نصب رآکتور. ۶۳

۳-۳-نتایج حاصله از شبیه سازی.. ۶۴

منابع : ۶۸

فصل اول :متانول ،خواص و روشهای تولید

 

۱-۱-تاریخچه [۱]

     مصریان باستان جهت مومیایی کردن ازمخلوطی استفاده می کردند که شامل متانول نیزبود،که آنرا از پیرولیز چوب به دست آورده بودند با این وجود متانول خالص برای اولین بار توسط رابرت بویل در ۱۶۶۱ جدا سازی شد، که او آنرا Spirit of box  نامید. زیرا در تهیه آن از چوب صندوق استفاده کرده بود که بعداً به Piroxilic Spirit  معروف شد. در سال ۱۸۳۴ ، شیمیدانان فرانسوی آقایانJean -Baptiste وEugene Peligot  عناصر تشکیل دهندة آنرا شناسایی کردند ،آنها همچنین لغت methylene را به شیمی آلی وارد کردند که واژه methu به معنای شراب واژه hyle به معنای چوب بود. سپس در سال ۱۸۴۰ واژه methyl  از آن مشتق شد و جهت توصیف Methyl Alcohol  استفاده شد. سپس این نام در سال ۱۸۹۲ به وسیله کنفرانس بین المللی نامگذاری مواد شیمیایی بهMethanol کوتاه شد.

   در۱۹۲۳،دانشمند آلمانیMattias Pier که برای شرکتBASFکارمی کرد،  طرحی را جهت تولید متانول از گاز سنتز (مخلوطی از اکسیدهای کربن و هیدروژن که از زغال به دست می آمد و در سنتز آمونیاک نیز کاربرد دارد ) ارائه کرد. که در آن از کاتالیست روی- کرم استفاده می شد و شرایط سختی از نظر فشاری (۱۰۰۰ الی۳۰۰  اتمسفر) و دما (بالای ) داشت. تولید مدرن متانول هم اکنون توسط کاتالیست هایی که امکان استفاده از شرایط دمایی کمتر را دارند، ممکن است.

 متانول ( متیل الکل ) به فرمول  یک مایع شفاف سفید رنگ شبیه آب است که در دمای معمولی بوی ملایم دارد . از زمان کشف آن در اواخر قرن هفدهم تاکنون مصرف آن رشد رو به فزونی داشته به طوری که اکنون با تولید سالانة‌ تن متریک رتبه ۲۱ را در بین محصولات شیمیایی صنعتی داراست متانول گاها با عنوان الکل چوب یا ( برخی مواقع Wood Spirite ) نیز خوانده می شود که دلیل آن به تقریبا یک قرن تولید تجاری آن از خرده چوب بر می گردد به هر حال متانولی که از چوب تهیه شده باشد مواد آلوده کنندة‌ بیشتری ( مانند استیلن ،‌ اسید استیک ، الکل الیل ) دارد تا الکلهای صنعتی امروزی .

      برای سالهای متوالی مصرف کننده اصلی متانول تولیدی ، فرمالدئید با مصرف تقریبا نیمی از متانول تولید شده بود ولی در آینده از اهمیت آن کاسته می شود زیرا مصارف جدیدی از جمله تولید اسید استیک و MTBE (که جهت بهبود عدد اکتان بنزین به کار می رود ) در حال افزایش است . از طرفی استفاده از متانول به عنوان سوخت در شرایط ویژه قابل توجه خواهد بود .

۱-۳-  واکنشهای شیمیایی [۱]

    متانول معمولا در واکنشهایی شرکت می کند که از نظر شیمیایی در دسته واکنشهای الکلی قرار می گیرند از مواردی که از نظر صنعتی اهمیت ویژه أی دارد هیدروژن زدایی و هیدروژن زدایی اکسایشی متانول و تبدیل به فرم آلدئید برروی کاتالیست نقره یا مولیبدن – آهن و همچنین تبدیل متانول به اسید استیک بر روی کاتالیست کبالت یا روبیدیوم است .

     از طرفی دی متیل اتر (DME) از حذف آب متانول توسط کاتالیست اسیدی قابل تولید است. واکنش ایزوبوتیلن با متانول که توسط کاتالیزور اسیدی انجام می شود و منجر به تولید متیل توشیو بوتیل اتر می شود ( که یک افزایندة‌ مهم عدد اکتان بنزین است ) کاربرد فزاینده أی دارد .

    تولید متیل استرها با کاتالیزور اسیدی از اسیدهای کربوکسیلیک و متانول انجام می شود که در آن جهت کامل کردن واکنش از استخراجی آزئوتروپی آب استفاده می شود .

   متیل هیدروژن سولفات ،‌ متیل نیترات و متیل هالیدها از واکنش متانول با اسیدهای غیر آلی مربوطه تولید می شوند .

   مونو- ،‌ دی– و تری- متیل آمین از واکنش مستقیم آمونیاک با متانول به دست می آیند .

۱-۴- تولید صنعتی و فرآیند آن [۱]

    اولین و قدیمی ترین روش تولید عمده متانول تقطیر تخریبی چوب بود که از اواسط قرن نوزدهم تا اوایل قرن بیستم به صورت عملی انجام می شد و هم اکنون در ایالات متحده دیگر انجام نمی شود. این روش تولید با توسعه فرآیند سنتز متانول از هیدروژن و اکسیدهای کربن،‌ در دهه ۱۹۲۰ کنار گذاشته شد .

   متانول همچنین به عنوان یکی از محصولات اکسیداسیون غیر کاتالیستی هیدروکربنها تولید می شد. تجربه أی که از سال ۱۹۷۳ کنار گذاشته شد .

     متانول را همچنین می توان به عنوان یک محصول فرعی فرآیند           Fisher-Tropsch به دست آورد تولید مدرن متانول در مقیاس صنعتی منحصراً بر پایه سنتز آن از مخلوط پر فشار هیدروژن ،‌ دی اکسید کربن و منوکسید کربن در حضور کاتالیست فلزی هتروژنی است .

تولید مدرن در مقیاس صنعتی متانول امروزه منحصرا از مخلوط پر فشار گازهای هیدروژن و اکسیدهای کربن بر روی کاتالیت فلزی است.فشار گاز سنتز به اکتیویته کاتالیست مورد استفاده ،‌ بستگی دارد .

   طبق توافق حاصل شده،‌ تکنولوژیهایی تولید متانول به صورت زیر دسته بندی شده اند :فرآیندهای فشار پائین (۵-۱۰ Mpa) ،‌ فرآیندهای با فشار میانی (۱۰-۲۵ Mpa) و فرآیندهای فشار بالا (۲۵-۳۵ Mpa).

    در ۱۹۲۳ شرکت BASF درآلمان اولین سنتزتجاری متانول را آغازکرد. در این فرآیند از سیستم کاتالیستی اکسید روی–اکسید کرم بهره گرفته شده بود . که این واقعه را آغاز تکنولوژی تولید فشار بالا می توان برشمرد .

   در سال۱۹۲۷ در یک تلاش جداگانه تولید فشار بالای متانول در واحدهای متعلق به شرکت های Dupont و Commercial Sovents ‎آغاز شد .

   در سال ۱۹۶۵ یک واحد مدرن تولید متانول با ظرفیتی در حدود ۲۲۵-۴۵۰ t/d ،‌ در فشار ۳۵ Mpa به طور خالصی گاز طبیعی به ازاء‌ تولید یک تن متانول مصرف می کرد که برای فشارهای بالاتر از ۲۱ Mpa از کمپرسورهای پیستونی استفاده می شد .

   در اواخر دهه ۱۹۶۰ تکنولوژی تولید فشار میانی و فشار پائین متانول با استفاده از کاتالیست با دوام و اکتیو مس – اکسید روی به صورت عملی مورد بهره برداری قرار گرفت .

شرکت ICI    Ltd. در انگلستان ،‌ سنتز فشار پائین متانول را در اواخر سال ۱۹۶۶ آغاز کرد که در آن سال یک واحد تولیدی با ظرفیت ۴۰۰ t/d در فشار ۵Mpa فقط از کمپرسورهای سانتریفوژ استفاده می کرد .

در سال ۱۹۷۱ شرکت Lurgi به صورت آزمایشی یک واحد تولیدی فشار پائین با ظرفیت ۱۱ t/d که از کاتالیست مس استفاده می کرد ،‌ احداث نمود .

    مزیتهای تکنولوژی های فشار پائین در کاهش توان مصرفی جهت افزایش فشار،‌ عمر طولانی تر کاتالیست ها و ظرفیت تولید بیشتر بود که در کنار آن می توان به ظرفیت single–train بیشتر و اطمینان از عملکرد اشاره کرد ،‌ که با فشار بالا در تناقض هستند.

  از سال ۱۹۷۰ به بعد علی رغم برخی استثناء‌ها هرگونه توسعه واحدهای تولید متانول با استفاده تکنولوژی فشار پائین یا میانی بوده است. درسال ۱۹۸۰ ،‌ ۵۵% تولید متانول در ایالات متحده با استفاده از سنتز فشار پائین بوده و ازآن به بعدواحدهای فشار بالا با تکنولوژی فشار پائین اصطلاحاً “revamp” شده اند، یا اینکه به کل تعطیل شدند .

   یک واحد معمول تولید فشار پائین – میانی در سال ۱۹۸۰ با ظرفیت        ۱۰۰۰-۲۰۰۰t/d در فشاری در حدود ۸-۱۰ Mpa عمل می کند و در یک فرآیند single – train فقط از کمپرسورهای سانتریفیوژ بهره می برد و جهت تولید ۱ تن متانول  گاز طبیعی مصرف می کند .

     تنها نوآوری جدیدی که در افق دیده می شود ، فرآیند سه فازی شرکت  Chem System است . یک مایع بی اثر جهت سیال سازی کاتالیست و خارج کردن حرارت از سیستم به کار گرفته شده است . ادعا شده است که درصد تبدیل بدون “recycle” این فرآیند ازدرصد تبدیل فرآیند دو فازی معمولی بالاتر است .

   [۶]امروزه سه نوع فرآیند به طور عمده در جهان جهت کید متانول مورد استفاده قرار می گیرند که عبارتند از :ICI ، Lurgi ،  Mitsubishi

رآکتور طراحی ICI از تعدادی بسترهای کاتالیست ثابت آدیاباتیک تشکیل شده واز گاز سرد خوراک جهت خنک کردن واکنشگرهای بین بسترها استفاده می شود .این باعث ایجاد جهشهایی در پروفیل دمای رآکتور می شود که در شکل دیده می شود .رآکتورهای طراحی شرکت های Lurgi و Mitsubishi پروفیل دمای افقی تری دارند که تقریبا رآکتور را Isothermal می توان فرض کرد که این در اثر تولید مقدار قابل توجهی بخار فشار بالا خواهد بود .غیرفعال شدن کاتالیست در رآکتورهای همدما کندتر خواهد بود.

۱-۵-ماده خام

    خوراک معمول جهت تولید گاز سنتز مورد نیاز برای تولید متانول گاز طبیعی و باقیمانده های نفتی است . از دیگر خوراک های مناسب می توان به نفتا و ذغال سنگ اشاره کرد .

   گاز طبیعی ،‌ باقیمانده های نفتی و نفتا در مجموع ۹۰% ظرفیت جهانی تولید متانول را تأمین می کنند باقیمانده مربوط به گازهای زائد از فرآیندهای متفرقه است ( off-gas ) .

1-5-1-گاز طبیعی

       درفرآیند مدرن تولید متانول ازگاز طبیعی ،‌ گازطبیعی که قسمت اصلی آن را متان تشکیل می دهد سولفورزدایی می شود (حداکثر مقدار سولفور کمتر از ۰٫۲۵ ppm ) و با بخار مخلوط می شود و تا دمای پیشگرم می شود . مخلوط به reformer فرستاده می شود و در آنجا در لوله های حاوی کاتالیست غنی شده از نیکل که از بیرون با شعله Burner ها در تماسند، جریان می یابد .

  که شرایط تعادل باید در دمای  و فشار ۰٫۷-۱٫۷ Mpa در نظر گرفته شود.واکنش کلی بسیار گرماگیر است و به مقادیر زیادی سوخت جهت مشعل ها نیاز است .

     گرمایی  که ازreformer توسط گاز سوخت شده و گاز سنتز تولید شده خارج می شود ،‌ جهت تولید بخار با فشار ۴-۱۰ Mpa (بخار HHPS) استفاده می شود که به نوبه خود در تأمین نیروی محرکه (توربینها) و بار حرارتی برجها ،‌ کاربرد دارد . که در کاهش مصرف انرژی کلی فرآیند نقش قابل توجهی دارد .

  گاز سنتزی که در Steam reformer از گاز طبیعی به دست می آید نسبت به استوکیومتری واکنش تولید متانول ،‌ مقدار بیشتری هیدروژن دارد . استوکیومتری واکنش سنتزمتانول خوراکی با نسبت  در حدود ۱٫۰۵ دارد در حالی که در مخلوط تولیدی از Steam reformer ،‌ این نسبت (اگر  به مخلوط اضافه شود ) در حدود ۱٫۴ است. در کاتالیست فرآیند فشار پائین ،‌ این مقدار اضافی هیدروژن ، موجود بهبود عملکرد کاتالیست می شود .

   به این جهت هزینه های converter پائین می آید در حالی که در فرآیندهای فشار بالا باید هیدروژن از مخلوط جدا شود که خود مستلزم هزینه و عملیات خاص است .  هیدروژن اضافی پس از مرحله سنتز به عنوان سوخت در reformer مورد استفاده قرار می گیرد . بنابراین راندمان کلی انرژی در سطح بالایی نگه داشته می شود که موجب اقتصادی بودن فرآیند خواهد شد .

    در طراحی واحد تولید متانول از گاز طبیعی در فشار پائین می توان اضافه کردن  را به مخلوط حاصل از reforming ،‌ را در نظر گرفت . که مزیت آن در استفاده از هیدروژن اضافی جهت کاهش مصرف گاز طبیعی به ازاء‌ تولید هر تن متانول متانول است . با توجه به اینکه  ماده گرانقیمتی نیست .

اضافه کردن مقدار کافی از  باعث بهبود سنتز از نظر استوکیومتری   می شود مانند آنچه در مورد خوراک نفتا وجود دارد .بازیافت  از گاز سوخته شده در reformer اقتصادی گزارش نشده است .

۱-۵-۲-باقیمانده های نفتی


دانلود با لینک مستقیم


مقاله شبیه سازی رآکتور سنتز متانول

پایان نامه سنتز چند جزئی آمیدوآلکیل نفتولها با استفاده از فنیل فسفینیک اسید به عنوان کاتالیزگر

اختصاصی از هایدی پایان نامه سنتز چند جزئی آمیدوآلکیل نفتولها با استفاده از فنیل فسفینیک اسید به عنوان کاتالیزگر دانلود با لینک مستقیم و پر سرعت .

پایان نامه سنتز چند جزئی آمیدوآلکیل نفتولها با استفاده از فنیل فسفینیک اسید به عنوان کاتالیزگر


پایان نامه سنتز چند جزئی آمیدوآلکیل نفتولها با استفاده از فنیل فسفینیک اسید به عنوان کاتالیزگر

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:80

پایان نامه دوره کارشناسی ارشد در رشته شیمی آلی

فهرست مطالب:
فصل اول

مقدمه و تئوری

مقدمه  1
1-1- شیمی سبز    2
1-2-واکنش های چند جزئی    4
1-2-1-تاریخچه واکنش های چند جزئی    5
1-3- ترکیبات آمیدوآلکیل نفتول ها    8
1-2-2- فناوری واکنش های چند جزیی و سنتز داروها    10
1-2-3- سنتز مواد طبیعی به کمک واکنشهای چند جزیی    12
1-4- کاتالیزگر    13
1-4-1- انواع کاتالیزگر    14
1-4-2- کاتالیزگرهای ناهمگن    14
1-4-1-2- کاتالیزگرهای همگن    14
1-4-1-3- کاتالیزگرهای زیستی    15
1-5- فسفینیک اسید    15
1-6- مروری بر واکنش های انجام شده در فاز جامد    20
1-7- هدف از پژوهش    23

فصل دوم
بخش تجربی
2-1-دستگاه¬های مورد استفاده    25
2-1-1-دستگاه NMR    25
2-1-2- دستگاه تبخیر در خلاء    25
2-1-3- شناساگر فلوئورسانس و کروماتوگرافی لایه نازک (TLC)    25
2-1-4- دستگاه اندازه¬ گیری نقطه ذوب    25
2-1-5- دستگاهIR    25
2-2-مواد مورد استفاده    25
2-3- تهیه ی مشتقات آمیدوآلکیل نفتول ها در مجاورت فنیل فسفینیک اسید به عنوان کاتالیزگر آلی، در دمای C◦ 120  تحت شرایط بدون حلال    26
2-3-1-بدست آوردن شرایط بهینه جهت تهیه آمیدوآلکیل نفتول ها با استفاده از بنزآلدهید، اوره و 2-نفتول در مجاورت فنیل فسفینیک اسید به عنوان کاتالیزگر آلی    26
2-3-1-1-انتخاب کاتالیزگر مناسب برای انجام واکنش    27
2-3-1-2-انتخاب دمای مناسب برای انجام واکنش    27
2-3-1-3-تعیین مقدار مناسب کاتالیزگر کاتالیزگر    28
2-3-1-4-انتخاب نسبت مولی مناسب واکنش دهنده¬ها    28
2-3-1-5-بررسی حلال    28
2-3-2- روش عمومی سنتز مشتق های آمیدوآلکیل نفتول ها در مجاورت کاتالیزگر آلی فنیل فسفینیک اسید    29
2-3-3- تهیه ی ان-](2-هیدروکسی نفتالن-1-یل)-(4-برمو-فنیل)-متیل[-استامید ، به عنوان یک روش نمونه برای تهیه مشتقات آمیدوآلکیل نفتول ها در شرایط بدون حلال    29
2-3-4- اطلاعات طیفی مربوط به چند نمونه از مشتقات  2-آمیدوآلکیل نفتول ها    30
2-3-4-1-([4-برموفنیل)(2-هیدروکسی نفتالن-1-یل) متیل]اوره    30
2-3-4-2- ان-](2-هیدروکسی نفتالن-1-یل)فنیل متیل[-استامید    31
2-3-4-3- ان-](2-هیدروکسی نفتالن-1-یل)-پارا-تولیل-متیل[-استامید    31
2-3-4-4- ان-](2-هیدروکسی نفتالن-1-یل)-(4-متوکسی-فنیل)-متیل[-استامید    31
2-3-4-5- ان-[(2-هیدروکسی نفتالن-1-یل)-(4-کلرو-فنیل)-متیل]-استامید    32
2-3-4-6- ان-](2-هیدروکسی نفتالن-1-یل)-(4-برمو-فنیل)-متیل[-استامید    32

فصل سوم
بحث و نتیجه گیری
3-1-سنتز مشتقات آمیدوآلکیل نفتول ها با استفاده از آلدهید های آروماتیک مختلف، اوره یا استامید و 2-نفتول در مجاورت کاتالیزگر آلی جامد فنیل فسفینیک اسید در دما  °C 120 و شرایط بدون حلال    33
3-2- بدست آوردن شرایط بهینه جهت سنتز آمیدوآلکیل نفتول ها با استفاده از آلدهید ، اوره و 2-نفتول در مجاورت کاتالیزگر آلی، فنیل فسفینیک اسید    33
3-2-1-انتخاب کاتالیزگر مناسب برای انجام واکنش    33
3-2-2- انتخاب دمای مناسب برای انجام واکنش    35
3-2-3-تعیین مقدار مناسب  کاتالیزگر    35
3-2-4-انتخاب نسبت مولی مناسب واکنش دهنده¬ها    37
3-2-5-بررسی حلال های مختلف    38
3-2-6- روش عمومی برای  تهیه آمیدوآلکیل نفتول ها با استفاده از کاتالیزگر آلی فنیل فسفینیک اسید    39
3-2-7-بررسی نتایج جدول 3-6    42
3-2-7-1- شناسایی N-](2-هیدروکسی نفتالن-1-یل)-(4-نیترو-فنیل)-متیل[-استامید    42
3-2-7-2- شناسایی 1-((4-برموفنیل) (2-هیدروکسی نفتالن -1-یل)متیل) اوره    43
3-5-نتیجه گیری    44
3-2-8-پیشنهاداتی برای آینده    46
طیف.....................................................................................................................۴۷    
منابع....................................................................................................................۵۷.
    

فهرست جداول
عنوان------------------------------------------------------------صفحه
جدول3-1: بهینه سازی کاتالیزگر    34
جدول3-2: بهینه سازی دما    35
جدول 3-3: بهینه سازی مقدار کاتالیزگر    36
جدول 3-4: بهینه سازی نسبت مولی واکنش دهنده¬ها    37
جدول3-5: بهینه سازی حلال    38
جدول3-6: نتایج تهیه آمیدوآلکیل نفتول ها با استفاده از کاتالیزگر آلی فنیل فسفینیک اسید در شرایط بدون حلال    39
جدول3-7: جدول 3-7: نتایج بررسی مقایسه روش این تحقیق نسبت به سایر روش های گزارش شده درمجلات    34


فهرست طیف ها
عنوان  ----------------------------------------------------------- صفحه
(طیف ¬شماره11H NMR 400 MHz ) اترکیب N-[(2-هیدروکسی نفتالن-1-یل)-(4-نیترو-فنیل)-متیل]-استامید  درحلال DMSO…….………...............................................................…….…………...47
(طیف شماره1الف1H NMR 400 MHz) پهن شده ترکیبN-[(2-هیدروکسی نفتالن-1-یل)-(4-نیترو-فنیل)-متیل]-استامید در حلال DMSO ……...……………………………………………………..……….……48
(طیف شماره1ب13C NMR 100 MHz ) ترکیب N-[(2-هیدروکسی نفتالن-1-یل)-(4-نیترو-فنیل)-متیل]-استامید در حلال DMSO ………….………...…………………………………………………………………...…49
(طیف شماره 1ج13C NMR 100 MHz ) پهن شده ترکیب N-[(2-هیدروکسی نفتالن-1-یل)-(4-نیترو-فنیل)-متیل]-استامید در حلال DMSO ……....…………………………………..………………………………50
 (طیف ¬شماره21H NMR 400 MHz ) ترکیب1-((4-برموفنیل) (2-هیدروکسی نفتالن -1-یل)متیل) اوره در  حلال DMSO...…...………………………………………………………………………………..………….…...51
(طیف شماره2الف1H NMR 400 MHz) پهن شده ترکیب1-((4-برموفنیل) (2-هیدروکسی نفتالن -1-یل)متیل) اوره در  حلال DMSO...…..………………………………………………………………………….….52
(طیف شماره2ب13C NMR 100 MHz ) ترکیب1-((4-برموفنیل) (2-هیدروکسی نفتالن -1-یل)متیل) اوره در  حلال DMSO...............................................................................................................53
(طیف شماره 2ج13C NMR 100 MHz ) پهن شده ترکیب1-((4-برموفنیل) (2-هیدروکسی نفتالن -1-یل)متیل) اوره در  حلال DMSO ………..….....…………………………………………………………………..54
(طیف شماره21H NMR 400 MHz ) ترکیب1-((4-برموفنیل) (2-هیدروکسی نفتالن -1-یل)متیل) اوره در
 حلال D2O DMSO. ……………….……………………………………………………………..………………..55
(طیف ¬شماره2ذ IR) ترکیب1-((4-برموفنیل) (2-هیدروکسی نفتالن -1-یل)متیل) اوره در  حلال DMSO.......................................................................................................................56


چکیده:
دراین پروژه، روش موثری برای سنتز مشتقات  آمیدوآلکیل نفتول ها با استفاده از واکنش چند جزئی  آلدهید های مختلف، 2-نفتول و اوره یا استامید تحت شرایط بدون حلال در مجاورت کاتالیزگر آلی فنیل فسفینیک اسید ارائه می شود. بدست آوردن محصولات در مدت زمان کوتاه، با راندمان خوب، استفاده از مقدار کاتالیرگری کاتالیزگر ، روش جداسازی آسان و عدم استفاده از حلال از مزایای این روش می باشد. 
ساختار محصولات بوسیله طیف های H1NMR  ،C13NMR  ،IR و  نقطه ذوب شناسایی شد.  


دانلود با لینک مستقیم


پایان نامه سنتز چند جزئی آمیدوآلکیل نفتولها با استفاده از فنیل فسفینیک اسید به عنوان کاتالیزگر

پایان نامه سنتز و ساخت قطعات از نانو ذرات زیرکونیا و محلولهای جامد آن جهت استفاده در پیلهای سوختی اکسید جامد

اختصاصی از هایدی پایان نامه سنتز و ساخت قطعات از نانو ذرات زیرکونیا و محلولهای جامد آن جهت استفاده در پیلهای سوختی اکسید جامد دانلود با لینک مستقیم و پر سرعت .

پایان نامه سنتز و ساخت قطعات از نانو ذرات زیرکونیا و محلولهای جامد آن جهت استفاده در پیلهای سوختی اکسید جامد


پایان نامه سنتز و ساخت قطعات از نانو ذرات زیرکونیا و محلولهای جامد آن جهت استفاده در پیلهای سوختی اکسید جامد

 

 

 

 

 

 


فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:167

پایان نامه کارشناسی ارشد مهندسی مواد(سرامیک)

فهرست مطالب:

فصل اول : مقدمه    1
1-1-  مقدمه    2
فصل دوم : مروری برمنابع مطالعاتی    5
2-1-  فناوری نانو    6
2-2- خواص نانوذرات    7
2-3- روشهای تولید نانو ذرات    7
2-4- کاربرد نانو تکنولوژی    8
2-5- نانو کامپوزیت های سرامیکی    10
2-5-1- طبقه بندی نانو کمپوزیت های سرامیکی    10
2-5-2-  خواص و کاربرد نانو کامپوزیتهای سرامیکی    11
2-6- نانو محلولهای جامد سرامیکی    11
2-6-1- محلول جامد از نوع  بین نشینی    11
2-6-2- محلول جامد از نوع جانشینی    11
2-6-2-1- انواع محلول جامد جانشینی    11
2-6-3- خواص مکانیکی محلول های جامد    12
2-6-4- محلولهای جامد فوق اشباع    12
2-7- روشهای سنتز نانو محلول های جامد سرامیکی    12
2-7-1- آلیاژ سازی مکانیکی    12
2-7-2- سل- ژل    13
2-7-3- رسوبی و همرسوبی (رسوبگذاری)    14
2-8-  پیل سوختی چیست؟    15
2-9- تاریخچه پیل سوختی    18
2-10- انواع پیل های سوختی    19
2-10-1- پیل سوختی اسید فسفریک  (PAFC)    19
2-10-2- پیل سوختی قلیایی (AFC)    20
2-10-3- پیل سوختی کربنات  مذاب (MCFC)    20
2-10-4- پیل  سوختی الکترولیت پلیمر یا غشای مبادله کننده پروتون(PEFC)    21
2-10-5- پیل  سوختی  اکسید جامد (SOFC)    22
2-10-5-1- تاریخچه پیل ‌سوختی اکسید جامد (SOFC)    22
2-10-5-2- وظیفه صفحات الکترود متخلخل در پیل ‌سوختی اکسید جامد شامل موارد زیر است    24
2-10-5-3- روابط و واکنشهای موجود در یک پیل سوختی اکسید جامد    24
2-10-5-4- نیروی الکتروموتیو (EMF) و معادله  نرنست برای پیل های سوختی اکسید جامد    25
2-10-5-5- پتانسیل الکتروشیمیایی و رسانایی یونی در پیل های سوختی اکسید جامد    26
2-10-5-6- محاسبه رسانایی الکتریکی و مقاومت الکتریکی برای پیل های سوختی اکسید جامد    26
2-10-5-7-  جزئیات عملکرد پیل های سوختی اکسید جامد    26
2-11-  مقایسه کلی بین پیل های سوختی از نظر دمای کارکرد و  بازده و توان تولیدی    29
2-12- مزایا و معایب پیل های سوختی    30
2-13- موانع پیش روی استفاده از پیل های سوختی    31
2-14-  کاربرد های  پیل سوختی    32
2-15- زیرکونیا    33
2-15-1- خواص  فیزیکی، مکانیکی، و شیمیائی زیرکونیا    33
2-15-2- پلی مورف های زیرکونیا    34
2-15-2-1-  فاز مونوکلینیک زیرکونیا    34
2-15-2-2- فاز تتراگونال زیرکونیا    35
2-15-2-3- فاز مکعبی زیرکونیا    35
2-15-3- کاربرد های زیرکونیا    35
2-15-3-1- کاربرد های مبتنی بر خواص الکتریکی زیرکنیا    36
2-15-3-2- کاربرد های مبنی بر دیرگدازی زیرکونیا    36
2-15-3-3- کاربرد های مبتنی بر خواص مکانیکی    37
2-16- مقدمه ای برآند پیل سوختی اکسید جامد    37
2-17- ناحیه سه فازی درآند    38
2-18-  انواع مواد آندی    39
2-18-1-  سرمتYSZ  –Ni    39
2-18-2- فلورایت ها    41
2-18-3- مواد آندی پروسکایت    44
2-18-4- مواد آندی تنگستن برنز    48
2-18-5- مواد آندی پیروکلر    49
2-18-6- مواد آندی سولفور آزاد    50
2-19- توسعه سینتیک و مکانیسم واکنش و مدل آند ها    51
2-20- توسعه تکنولوژی های ارزان قیمت برای تولید و ساخت آند    55
فصل سوم : فعالیت های آزمایشگاهی    58
3-1- مواد اولیه مورد استفاده    59
3-2- روش کار    60
3-2-1- مراحل سنتز پودر (AZ)    60
3-2-1-1- مرحله اول: اختلاط مواد اولیه    61
3-2-1-2- رفلاکس سیستم    61
3-2-1-3- مرحله سوم: سانتریفیوژ محلول    62
3-2-1-4- مرحله ی چهارم : شستشو رسوب بدست آمده    62
3-2-1-5- مرحله پنجم: خشک کردن و عملیات حرارتی اولیه    62
3-2-2- سنتز پودر AZN))    62
3-2-3- سنتز پودر (AZNC)    63
3-3- تهیه و ساخت آند پیل سوختی اکسید جامد    64
3-3-1- روش خشک    65
3-3-1-1- تخلخل زای: PVA (پلی ونیل استات)    65
3-3-1-2- تخلخل زای: T.P.P (تری فنیل فسفین)    67
3-3-1-3- تخلخل زای :خاک اره    68
3-3-1-4- تخلخل زای:CMC  (کربوکسی متیل سلولز)    69
3-3-1-5- تخلخل زای: نمک طعام  (NaCl )    70
3-3-1-6- تخلخل زای:  شکر    70
3-3-1-7- تخلخل زای: اوره Urea    71
3-3-1-8- تخلخل زای:PEG  (پلی اتیلن گلیکول)    72
3-3-1-9- تخلخل زای :MC  (متیل سلولز)    73
3-3-1-10- تخلخل زای: مخلوط PVA و T.P.P    74
3-3-1-11- تخلخل زای : مخلوط T.P.P وMC    75
3-3-1-12- تخلخل زای: اختلاط  PVAو  PEG    75
3-3-1-13- تخلخل زای: PEG وMC    76
3-3-1-14- تخلخل زای: PEG وT.P.P    76
3-3-1-15- تخلخل زای: PVA، PEG، MC    77
3-3-1-16- تخلخل زا ی : PVA،PEG ، T.P.P    77
3-3-2- روش تر    78
3-3-2-1- تخلخل زای: PVA (پلی ونیل استات)    78
3-3-2-2- تخلخل زای : T.P.P (تری فنیل فسفین)    80
3-3-2-3- تخلخل زای:  MC(متیل سلولز)    82
3-3-2-4- تخلخل زا:PEG  (پلی اتیلن گلیکول)    83
3-3-3- ساخت آند نهایی توسط PEG    85
3-4- اندازه گیری چگالی قطعات ساخته شده    87
3-4-1- دانسیته ارشمیدسی    87
3-4-2-  دانسیته معمولی    87
3-5- تجهیزات مورد استفاده    88
3-5-1- آنالیز براش اشعه ایکس (XRD)    88
3-5-2- آنالیز طیف سنجی مادون قرمز فوریه (FTIR)    88
3-5-3- آنالیز میکروسکوپ الکترونی روبشی (SEM) و آنالیز (EDX)    88
3-5-4- آنالیز UV-vis    88
3-5-5- آنالیزمیکروسکوپ الکترونی عبوری TEM    88
فصل چهارم : نتایج و بحث    90
4-1- بررسی خواص فیزیکی وشیمیایی پودرسنتزشده    91
4-1-1- بررسی نتایج حاصل ازآنالیزتفرق اشعه ی ایکس    91
4-1-1-1- نمونهAZ    91
4-1-1-2- نمونه : AZN    96
4-1-1-3- نمونه AZNC    97
4-1-2- ارزیابی تثبیت فازی در نمونه های تهیه شده، با استفاده از آنالیز پراش اشعه ی ایکس    98
4-1-2-1- نمونه AZ    99
4-1-2-2-  نمونه AZN    99
4-1-2-3-  نمونه AZNC    100
4-1-2- نتایج حاصل از طیف سنجی مادون قرمز    101
4-1-2-1- نتایج حاصل از طیف سنجی مادون قرمزنمونه AZ    101
4-1-2-2- نتایج حاصل از طیف سنجی مادون قرمز نمونه AZN    103
4-1-2-3- نتایج حاصل از طیف سنجی مادون قرمز نمونه AZNC    104
4-1-3- نتایج حاصل از آنالیز میکروسکوپ الکترونی روبشیSEM  و عبوری TEM    105
4-1-3-1- نتایج آنالیز SEM  برای نمونه AZ    106
4-1-3-2-  نتایج آنالیز  TEMبرای نمونه AZ    108
4-1-3-3- نتایج آنالیز  SEMبرای نمونه  AZN    109
4-1-3-4- نتایج آنالیز  TEMبرای نمونه AZN    111
4-1-3-5- نتایج آنالیز  SEM برای نمونه AZNC    112
4-1-3-6- نتایج آنالیز  TEMبرای نمونهAZNC    114
4-1-4- نتایج حاصل از تست EDX    115
4-1-4-1- نتایج حاصل از تست EDX برای نمونه AZ    115
4-1-4-2- نتایج حاصل از تست EDX برای نمونهAZN    116
4-1-4-3- نتایج حاصل از تست  EDXبرای نمونه AZNC    116
4-1-5- نتایج حاصل از تست UV-vis    117
4-1-5-1- نتایج حاصل از تست UV-vis برای نمونه AZ    117
4-1-5-2- نتایج حاصل از تست UV-vis برای نمونه AZN    118
4-1-5-3- نتایج حاصل از تست UV-vis برای نمونه AZNC    119
4-1-6-  نتایج حاصل از قطعات ساخته شده به روش اختلاط خشک    121
4-1-6-1- نتایج حاصل از قطعات ساخته شده با تخلخل زای PVA    121
4-1-6-2- نتایج حاصل از قطعات ساخته شده با تخلخل زای T.P.P    121
4-1-6-3- نتایج حاصل از قطعات ساخته شده با خاک اره    121
4-1-6-4- نتایج حاصل از قطعات ساخته شده با CMC    121
4-1-6-5- نتایج حاصل از قطعات ساخته شده با نمک طعام    121
4-1-6-6- نتایج حاصل از قطعات ساخته شده با شکر    121
4-1-6-7- نتایج حاصل از قطعات ساخته شده با اوره    122
4-1-6-8- نتایج حاصل از قطعات ساخته شده با PEG    122
4-1-6-9- نتایج حاصل از قطعات ساخته شده با MC    122
4-1-6-10- نتایج حاصل از قطعات ساخته شده با PVA و T.P.P    122
4-1-6-11- نتایج حاصل از قطعات ساخته شده با MC و T.P.P    122
4-1-6-12- نتایج حاصل از قطعات ساخته شده با  PVA و PEG    122
4-1-6-13- نتایج حاصل از قطعات ساخته شده با  PEGوMC    122
4-1-6-14- نتایج حاصل از قطعات ساخته شده با PEG  و T.P.P    123
4-1-6-15- نتایج حاصل از قطعات ساخته شده با  PEGو PVA و MC    123
4-1-6-15- نتایج حاصل از قطعات ساخته شده با  PEGو PVA و T.P.P    123
4-1-7-  نتایج حاصل از اختلاط تخلخل زا ها با حلال برای تهیه یک تخلخل زای مناسب    123
4-1-7-1-  نتایج حاصل از اختلاط تخلخل زای  PVA و حلال    123
4-1-7-2-  نتایج حاصل از اختلاط تخلخل زای  T.P.P و حلال    124
4-1-7-3-  نتایج حاصل از اختلاط تخلخل زای  MCو حلال    124
4-1-7-4-  نتایج حاصل از اختلاط تخلخل زای  PEGو حلال    124
4-1-8-  نتایج حاصل از قطعات ساخته شده به روش اختلاط تر    125
4-1-8-1- نتایج حاصل از قطعات ساخته شده با تخلخل زای PVA   به روش اختلاط تر    125
4-1-8-2- نتایج حاصل از قطعات ساخته شده با تخلخل زای T.P.P به روش اختلاط تر    125
4-1-8-3- نتایج حاصل از قطعات ساخته شده با تخلخل زای MC  به روش اختلاط تر    125
4-1-8-4- نتایج حاصل از قطعات ساخته شده با تخلخل زای PEG  به روش اختلاط تر    125
4-9-1- نتایج حاصل از دانسیته ارشمیدسی برای قطعات    126
4-10-1- نتایج حاصل از دانسیته معمولی برای قطعات    127
فصل پنجم : نتیجه گیری وپیشنهادات    128
5-1- نتیجه گیری نهایی    129
5-2-  پیشنهادات    130
مراجع    131


فهرست جداول
جدول 2-1 : مقایسه کلی انواع پیل های سوختی رانشان می دهد…………………………………..    30
جدول 3-1:مواد مصرفی برای سنتز پودر…………..……………………………………………………….    59
جدول 3-2:مقادیر افزودنPVA به AZ به روش خشک…………..………………………..………….    66
جدول 3-3:مقادیر افزودن T.P.P به AZ به روش خشک…………..………………………………….    68
جدول 3-4:مقادیر افزودن خاک اره به AZ …………..………………………..………………………….    69
جدول3-5: مقادیر افزودن …………….……..………………………………..……………………… CMC     69
جدول 3-6:میزان افزودن  نمک طعام به …………..………….…………………………..………… AZ    70
جدول3-7:میزان افزودن  شکر به ………………………………..…..………………………………….AZ    71
جدول3-8:میزان افزودن اوره به ……………………….…………….………………………………….AZ    72
جدول3-9:میزان افزودنPEGبه ……………………………………..………………………………….AZ    73
جدول3-10: میزان افزودن  MCبه …………..……………………………..………………………….AZ    74
جدول3-11: میزان افزودن  PVAو T.P.Pبه …………..………………………..………………….AZ    74
جدول3-12: میزان افزودن MC وT.P.P به …………..……………………………..……………….AZ    75
جدول3-13:میزان افزودن PVA و PEGبه …………..……………………………………………….AZ    85
جدول 3-14: میزان افزودنPEG  و  MCبه …………..………………….………………………….AZ    76
جدول 3-15: میزان افزودن PEG و T.P.Pبه …………..…………………..……………………….AZ    76
جدول 3-16:  میزان افزودن  PVAوPEG وMC به  …………..………………………………….AZ    77
جدول 3-17: میزان افزودن PVA ,PEG, T.P.P به …………..………………………………….AZ    77
جدول 3-18: میزان افزودنPVA  به AZ به روش تر…………..………….………………………….    79
جدول3-19: زمانهای و دماهای اختلاط  PVA با آب مقطر.……..………………………………….    79
جدول3-20: زمانها و دماهای اختلاط T.P.P با اتانول…………..……………………………….…….    81
جدول 3-21: ترکیب مقادیر مختلف T.P.P و AZ  بصورت تر…………..………………………….    82
جدول3-22: مقادیر، دماها و زمانهای اختلاط MC با آب مقطر…..………………………………….    82
جدول 3-23: مقادیر اختلاطMC  و …………..……………………………………………………….AZ    83
جدول3-24:مقادیر دماها و زمانهای حل شدن  PEGدر آب.…..…………………………………….    83
جدول3-25: مقادیر افزودن PEG به AZ به روش تر…………..……………..……………………….    84
جدول 3-26: اندازه و شرایط نهایی قطعات ساخته شده…………...………………………………….    85
جدول 3-27: علائم اختصاری برای نمونه های تهیه شده در مراحل مختلف…………………….    89
جدول 4-1: میانگین اندازه بلورک برای نمونه AZ از دمای 500 تا 1400 درجه سانتیگراد………….    95
جدول 4-2: میانگین اندازه بلورک برای نمونه AZN از دمای 500 تا 1400 درجه سانتیگراد..    97
جدول 4-3: میانگین اندازه بلورک برای نمونه AZNC از دمای 500 تا 1400 درجه سانتیگراد………….    98
جدول4-4: درصد وزنی و مقدار مول عناصر نمونه ……………………………………………….AZ    115
جدول4-5: درصدوزنی ومقدارمول عناصرنمونه …………..…..……………………………….AZN    116
جدول4-6: درصد عناصر و مقدار مول نمونه …………..…….……………………………….AZNC    117
جدول4-7: مقادیر چگالی قطعات به روش ارشمیدسی……………..………………………………….    126
جدول 4-8: اندازه گیری دانسیته قطعات به روش محاسبه ای…………..……………………………    127



فهرست اشکال
شکل2-1: شماتیک از ابعاد ماده از1 متر تا1 نانومتر…………………………..………..………………………………….    6
شکل2-2: طبقه بندی نانوکامپوزیت های  پایه سرامیکی……………………………..………………………………….    10
شکل2-3: شماتیک فرایند سل-ژل برای تولید نانو مواد…………..……………….…………………………………….    13
شکل2-4: شماتیک فرآیند استوالد……………………….....………………………………………………………………….    14
شکل2-5: مکانیسم تشکیل همگن ذرات در محلول…………..…………………….…………………………………….    15
شکل 2-6: شمای کلی یک پیل سوختی…………..…………………………………………….…………………………….    16
شکل2-7: نمای کلی یک پیل‌سوختی به همراه گازهای واکنش دهنده و تولید شده و مسیر حرکت یونها…………    16
شکل2-8:  شماتیک طرز کار پیل سوختی…………………………………………….…..………………………………….    17
شکل2-9: شماتیک اولین پیل سوختی ساخته شده توسط سر ویلیام گرو…………..…………………..………….    19
شکل2-10: واکنشهای انجام شده درپیل سوختی اسیدفسفریک…………..…………………..……………………….    20
شکل2-11: واکنشهای انجام شده در پیل سوختی قلیایی…………..…………………………………………………….    20
شکل2-12: واکنش های انجام شده درپیل سوختی کربنات مذاب…………..…………………….………………….    21
شکل2-13: واکنش های انجام شده در پیل سوختی پلیمری…………..……………………….……………………….    21
شکل 2-14: نمای کلی یک پیل سوختی اکسید جامد…………..………………………..……………………………….    23
شکل2-15: واکنش های انجام شده در پیل سوختی اکسید جامد…………..………………………………………….    23
شکل 4-16 : شماتیک آند و کاتد و الکترولیت و ورودی و خروجی یک پیل سوختی اکسید جامد..……...    24
شکل2-17: شماتیک  نحوه عملکرد یک پیل سوختی اکسید جامد…………..……………………………………….    27
شکل2-18: شماتیک یک منحنی قطبش ایده آل…………..…………………….………………………………………….    28
شکل2-19: ساختار فاز مونوکلینیک ………………………………………………..………………………………….ZrO2    34
شکل2-20: ساختار فاز تتراگونال …………………………………………………...………………………………….ZrO2    35
شکل2-21: ساختار فاز کیوبیک ……………………………………………………..………………………………….ZrO2    35
شکل2-22: شماتیک ناحیه سه فازی…………..…………………………………………………..………………………….    39
شکل2-23: ساختارفلورایت مکعبی ایده آل………………………………………………………………………………….    42
شکل2-24 :سلول واحد ساختار پروسکایت …………..………………………………………………………….ABO3    44
شکل2-25 : ساختار تنگستن برنز…………………………………………………………..………………………………….    49
شکل2-26 : ساختار A2B2O7 پیروکلر…………..…………………………………………..……………………………….    50
شکل2-27: شماتیکی از واکنشهای محتمل برای اکسایش H2 در حضور، آند-الکترولیت………………….….    53
شکل2-28: شماتیکی از مکانیسم جذب سطحی در آندهای …………..………………………………….Ni/YSZ    53
شکل 3-1: فلوچارت کلی روش کار…………………………………………………..…..………………………………….    60
شکل 3-2: فلوچارت تهیه ی پودر (AZ). …………..……………………………………………………………………….    61
عکس 3-3 : فلوچارت آماده سازی و سنتز پودر…………..……………………………………………………….AZN    63
فلوچارت 3-4: مراحل آماده سازی پودر…………..……………………………………………..……………….AZNC    64
فلوچارت 3-5: روش کلی ساخت آند…………..…………………………………………………..……………………….    65
فلوچارت 3-5:مرحله اختلاف مواد اولیه………………………………………………….………………………………….    65
شکل 3-6: فلوچارت عملیات حرارتی نمونه حاضر شده به روش اختلاط خشک…………....……….……….    67
شکل3-7: فلوچارت عملیات حرارتی نمونه های حاضر شده به روش اختلاط تر………………………………..    80
شکل3-8: فلوچارت جزئیات روش تر…………..…………………………………………………………………………….    84
تصویر3-9: قطعات نهایی ساخته شده…………..……………………………………………………….…………………….    86
تصویر3-10: قطعات نهایی ساخته شده…………………………………………………….………………………………….    86
تصویر3-11: قالب نهایی ساخت قطعات…………..………………………………………………………………………….    86
شکل4-1: الگوی پراش اشعه ایکس پودر AZدر دمای500 درجه سانتیگراد…………………….………………….    91
شکل4-2: الگوی پراش اشعه ی ایکس برای پودر AZ در 800 درجه سانتیگراد…………………………….……    92
شکل 4-3: الگوی پراش اشعه ایکس برای پودر AZ در دمای 1000 درجه سانتیگراد…………………………..    93
شکل 4-4: الگوی پراش اشعه ایکس برای پودر AZ در دمای 1200 درجه سانتیگراد…………………………..    93
شکل 4-5 : الگوی پراش اشعه ایکس برای پودر AZ در دمای 1400 درجه سانتیگراد….……………………..    94
شکل4-6: مقایسه ی الگوهای پراش اشعه ی ایکس برای پودر AZ از دمای 500 تا 1400 درجه سانتیگراد……………….    95
شکل4-7: مقایسه ی الگوهای پراش اشعه ی ایکس برای پودر AZN از دمای 500 تا 1400 درجه سانتیگراد…………….    96
شکل 4-8 : آنالیز پراش اشعه ی ایکس برای پودر AZNC از دمای 500 تا 1400 درجه سانتیگراد…….….    97
شکل 4-9: الف) نمونهAZ  عملیات حرارتی شده در 1400 درجه ی سانتیگراد ، ب) نمونه  AZسرد شده تا دمای محیط…..……    99
شکل 4-10: الف) نمونه AZN عملیات حرارتی شده در 1400، ب) نمونه AZN سرد شده تا دمای محیط…..…………    100
شکل 4-11:الف) نمونه AZNC عملیات حرارتی شده در 1400 ،ب) نمونه AZNC سرد شده تا دمای محیط……..….    100
شکل 4-12: آنالیز FTIR برای نمونه AZ در دمای الف) دمای محیط (بدون عملیات حرارتی)، ب)1200درجه سانتیگرا…………    102
شکل 4-13: آنالیز FTIR برای نمونه AZN دردمای الف) دمای محیط(بدون عملیات حرارتی)، ب)1200 سانتیگراد…..    103
شکل 4-14: آنالیز FTIRبرای نمونه  AZNCدر دمای الف) بعد از خشک،  ب) 1200درجه سانتیگراد.....    104
تصویر4-15: تصویر SEM از سطح شکست قطعه AZ در دمای500 درجه سانتی گراد، وبزرگنمایی………    106
شکل 4-16 : تصویر SEM از سطح شکست قطعه AZ در دمای1200درجه سانتی گراد و بزرگنمایی…….    107
شکل4-17: تصویر SEM از پودر  AZدر دمای 500 درجه سانتی گراد و بزرگنمایی15000………………….    108
شکل4-18: تصویر  TEMبرای محلول جامد  AZدر دمای500 درجه سانتی گراد……………….……………...    108
تصویر4-19: تصویر SEM از سطح شکست قطعه AZN در دمای500 و بزرگنمایی……………………….…..    109
شکل 4-20 : تصویر SEM از سطح شکست قطعه AZN در دمای1200 و بزرگنمایی…………………….……    110
شکل4-21: تصویر SEM پودرAZN در دمای500 درجه سانتی گراد و بزرگنمایی15000………………..…..    111
شکل4-22: تصویر  TEMبرای محلول جامد AZN در دمای500 درجه سانتی گراد……………....…………..    111
شکل4-23: تصویر SEM سطح شکست قطعه AZNC در دمای 500 و بزرگنمایی……………………………..    112
شکل 4-24 : تصویر SEM از سطح شکست قطعه AZNC در دمای1200درجه سانتی گراد و بزرگنمایی………………    113
شکل4-25: تصویر SEM پودرAZNC در دمای500 درجه سانتی گراد و بزرگنمایی15000……….…..……    114
شکل4-26: تصویر  TEMبرای محلول جامد AZN در دمای500 درجه سانتی گراد…………….……..……….    114
شکل4-27: آنالیز UV-vis برای نمونه AZ در دماهای الف) بعد از سنتز ب)1200 ج)1400درجه سانتی گراد………….    118
شکل4-28: آنالیز UV-Vis برای نمونه AZN در دماهای الف) بعد از سنتز ب)1200 ج)1400درجه سانتی گراد………    119
شکل4-29: آنالیز UV-vis برای نمونه AZNC در دماهای الف) بعد از سنتز ب)1200 ج)1400درجه سانتی گراد…….    120

 

 

چکیده:
نانومحلول های  جامد Al/ZrO2 وAl -Ni/ZrO2  و Al-Ni-Cu/ZrO2 به روش سنتز هم رسوبی با استفاده از هیدرولیز نمک های زیرکونیوم، آلومینیوم، نیکل و مس در اتانول آماده سازی شدند. محلول های جامد تهیه شده دردماهای مختلف و تحت اتمسفر هوا عملیات حرارتی شدند.و نقش عملیات حرارتی در تثبیت فاز مونوکلینیک در دماهای مختلف توسط XRD بررسی شد. خواص فیزیکی و شیمیایی نانومحلول های جامد تهیه شده توسط آنالیزهای FTIR ,UV-vis ,TEM ,SEM و EDX مورد بررسی قرارگرفت. باتوجه به نتایج آنالیز XRDتثبیت فازمونوکلینیک در محلول جامد صورت گرفته و نتایج SEM مورفولوژی کروی و یکنواختی اندازه ذرات رابرای نمونه های تهیه شده نشان می دهند. پودر های تهیه شده به منظور تولید مواد پایه آند پیل سوختی اکسید جامد، به روش تر و باتخلخل زای پلی اتیلن گلیکول مخلوط شده و توسط پرس هیدرولیک یکطرفه شکل دهی شدند و استحکام و دانسیته در آنها به مقدار بهینه رسید. دانسیته نسبی برای بهترین نمونه مقدار062/3 گرم برسانتی متر مکعب بدست آمد و تخلخل نمونه ها در حدود40-50 درصد محاسبه شد.

کلید واژه : نانو محلول جامد- پیل سوختی اکسید جامد- زیرکونیا – آند

فصل اول
مقدمه

1-1-  مقدمه
     انرژی از دیر باز به عنوان موتور محرک جوامع بشری شناخته شده است و با پیشرفت بشر بر اهمیت و تأثیر گذاری آن در زندگی بشر افزوده شده است. بر این اساس هیدروژن به عنوان یکی از سوختهای پاک یکی از بهترین گزینه ها جهت ایفای نقش حامل انرژی در این سیستم جدید ارائه انرژی می  باشد ]1[. بشردرآینده ای نه چندان دورعصر هیدروژن راتجربه خواهدکرد]1و2[. عمل تبدیل انرژی شیمیایی موجود در هیدروژن به انرژی الکتریکی توسط دستگاهی به نام پیل سوختی انجام می پذیرد]3[. پیل های سوختی در کاهش آلودگی محیط زیست نقش به سزایی را ایفا می کنند و به خاطر عدم به کارگیری قطعات  مکانیکی زیاد ایجاد آلودگی صوتی نیز نمی نمایند]3[. پیل های سوختی به عنوان یک منبع بسیار ایده آل انرژی برای استفاده های ساکن وغیر ساکن ، نظیر حمل ونقل و نیرو گاه ها می باشند .در این بین پیل های سوختی اکسید جامد (SOFCs) بدلیل مزایایی نظیر قیمت ارزانترمواد مورد استفاده درآنها، حساسیت کمتر به ناخالصی های گاز هیدروژن وکارایی بسیار بالاتر یکی از جذاب ترین انواع پیل های سوختی می باشد. این پیل های سوختی به دلیل اینکه هیدروژن ورودی به آنها نیاز به هیچ گونه تغییر و خالص سازی اولیه  ندارد، به شدت از نظر قیمت نسبت به سایر پیل های سوختی ارزان تر می باشند]4[. پیل های سوختی اکسید جامد از سه بخش آند و کاتد و الکترولیت تشکیل شده اند. اساس عملکرد یک پیل سوختی اکسید جامد شامل احیای یک اکسنده (O2) درکاتد و اکسایش یک سوخت (H2) در آند می باشد. در این پیل ها نیاز به یک الکترولیت هادی یون اکسیژن و پروتون، برای واکنشهای الکتروشیمیایی اکسایش و کاهش اکسیژن و هیدروژن، انجام شده درالکترودها می باشد]5[.
     امروزه در پیل های سوختی اکسید جامد بطور گسترده از هیدروژن به عنوان سوخت استفاده می شود. هیدروژن از منابع مختلف مانند: گازطبیعی، گازهای سنتزی حاصل از تبخیر منابع کربنی و زغال وغیره بدست می آید. هیدروکربنها نیز بطور گسترده به عنوان سوخت این پیل ها رواج پیداکرده اند. سوختهای هیدروکربنی معمولا در دماهای بالای عملکرد پیل سوختی اکسید جامد ناپایدارند و برروی آند به هیدروژن و کربن تبدیل می شوند. سوختهای هیدروکربنی بطور معمول مقدارکمی سولفوربه همراه دارند. کربن حاصل از تجزیه هیدروکربنها و سولفور موجود درآنها مشکلاتی برای عملکردپیل  ایجاد می کنند. برای جلوگیری از نشست کربن در سطح آند معمولا مقداری بخاراضافه به همراه گاز استفاده می شود و همچنین تغیراتی نیز در ترکیبات موادآندداده میشود. برای جلوگیری از سمی شدن پیل توسط سولفور معمولا سوخت را سولفور زدایی می کنند]5[.
     در سالهای اخیر تحقیقات گسترده ای بر روی مواد، کاتالیزورها، علوم سطح و خواص الکتروشیمیایی آندها انجام شده است] 4[. آندهای مورد استفاده در پیل های سوختی اکسید جامد از مواد و تنوع وگستردگی فراوانی برخوردارند. و از روشهای ساخت و سنتزمختلفی برای سنتزپودر و ساخت این آندها استفاده می شود. دوویژگی برجسته آند این پیل ها برای انتخاب ماده مناسب برای آند برای کارکردمناسب، الف)رسانایی یونی، ب)رسانایی الکترونی می باشد. زیرکونیا به عنوان یک ماده که به طور ذاتی دارای نقص جای خالی در ساختارمی باشد، یکی ازبهترین گزینه ها برای استفاده درآند این پیل ها می باشد.
     در این تحقیق از سنتز هم رسوبی برای تهیه محلولهای جامد استفاده شد. این روش بدلیل تولید ترکیباتی همگن و با خلوص بسیار بالا ، از اهمیت بسیار زیادی برخوردار بوده و علاوه بر آن کنترل اندازه دانه نیز در این روش بسیار آسان است]12[. هنگامی که زیرکونیا در دماهای پایین به روش هم رسوبی سنتز می شود امکان پایداری فاز تتراگونال به PH و هیدرولیز کننده مورد استفاد،وابسته می شود. در این تحقیق به روش سنتز همرسوبی، 3 محلول جامد، الف)Al-Zr، ب)Al-Zr-Ni،
ج)Al-Zr-Ni-Cu تهیه و آماده سازی شد. این محلول های جامد به عنوان مواد جدید برای استفاده در آند پیل های اکسید جامد طراحی و آماده شدند. ارزان بودن، غیرسمی بودن، سنتزآسان، تکرارپذیری تولید از جمله مزایای این مواد است. یکی از موارد مهم برای تولید و ساخت آندها در پیل سوختی اکسیدجامد، متخلخل بودن این آندها می باشد. این آندها باید دارای تخلخل با اندازه و توزیع یکنواخت باشند. که به این منظور از موادی مانند کربن و مواد دیگری برای متخلخل سازی استفاده می کنند]13[. دراین تحقیق برای متخلخل سازی آند چند نوع مختلف تخلخل زای، ارزان  قیمت و مناسب در آند استفاده شد. که نهایتا منجر به به استفاده از  PEGبه عنوان تخلخل ساز مناسب شد.پس از سنتز و تهیه محلول های جامد، موادحاصل ابتدا در دمای 500 درجه سانتیگراد عملیات حرارتی شدند و سپس برای تعیین تثبیت فازی و زینترینگ نهایی در دماهای800 و1000 و1200 و1400 درجه سانتی گراد عملیات حرارتی شدند.پس ازآن پودرهای حاصل با دو روش تر و خشک با چند نوع تخلخل زا ترکیب و با روش پرس هیدرولیک یکطرفه شکل دهی شده و عملیات حرارتی نهایی در1400 درجه سانتیگراد بر روی آنها صورت گرفت. قطعات آندی که دارای تخلخل مناسب و توزیع و اندازه تخلخل یکنواخت و استحکام کافی بودند، انتخاب شده و چگالی آنها به روش ارشمیدس اندازه گیری شد.
     در فصل دوم این پایانامه مفاهیمی در مورد نانو فناوری و نانو محلول جامدها ارائه گردیده است. در ادامه مفاهیم کلی و واکنشهای انجام شده در انواع پیل های سوختی شرح داده شده است.
سپس مفاهیم کلی و عمومی در موردآندهای پیل سوختی اکسید جامد، روشهای ساخت و مواد بکار برده شده در آنها، مورد بحث و بررسی قرارگرفته است. درفصل سوم ابتدا به مواد مورد استفاده در این پروژه پرداخته شده است. در ادامه روشهای انجام آزمایش(مواد و تجهیزات)ارائه داده شده و در بخش آخر دستگاهها و لوازم مورد استفاده جهت بررسی و خواص نمونه ها تشریح گردید. درفصل چهارم نتایج حاصل از آزمایشات و بحث های مربوطه ارائه گردیده است. فصل پنجم نتیجه گیری  کلی از این تحقیق رابیان می کند.


دانلود با لینک مستقیم


پایان نامه سنتز و ساخت قطعات از نانو ذرات زیرکونیا و محلولهای جامد آن جهت استفاده در پیلهای سوختی اکسید جامد