هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق رشته عمران بررسی انواع مختلف سیستم های مهاربندی با فرمت ورد

اختصاصی از هایدی دانلود تحقیق رشته عمران بررسی انواع مختلف سیستم های مهاربندی با فرمت ورد دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق رشته عمران بررسی انواع مختلف سیستم های مهاربندی با فرمت ورد


دانلود تحقیق رشته عمران بررسی انواع مختلف سیستم های مهاربندی با فرمت ورد

 

مقدمه  ...........................................................................................................................................11

١-١- سیستم های مهاربندی در فلسفه جدید طراحی ..................................................................13

١-٢ - چند نمونه از خرابی بادبند ها در زلزله های شدید ...........................................................15

١-٣ - انواع سیستم ساختمانهای اسکلت فولادی .........................................................................19

١-٣-١- مهار بندی های هم محور ..............................................................................................20

١-٣-١-١- بادبند های ضربدری ..................................................................................................22

١-٣-١-٢- بادبند های قطری .......................................................................................................23

١-٣-١-٣- بادبند شورن ٧ و ٨ ....................................................................................................23

١-٣-١-٤- بادبند های K ............................................................................................................24

١-٣-٢- مهار برون محور .............................................................................................................27

١-٣-٢-١- ترکیب سیستم مهاربندی شده واگرا با سیستم های سازه ای دیگر ............................30

١-٣-٣- مهاربند زانوئی.................................................................................................................31

١-٣-٤- معرفی بادبندهای دروازه ای............................................................................................33

١-٤- مقایسه تاثیر استفاده از بادبند دروازه ای ، هم محور ضربدری و برون محور در یک قاب دو طبقه ..............................................................................................................................................36

منابع

 

 

فرمت ورد قابل ویرایش

تعداد صفحات: 33

همراه با رفرنس نویسی و پاورقی داخل متن

منابع فارسی کامل

منابع انگلیسی کامل

ما در این بخش علاوه بر منابع مبانی نظری، منابع کلی دیگری رو برایتان در نظر گرفتیم تا همواره در نوشتن پایان نامه از این منابع بهره مند گردید.


دانلود با لینک مستقیم


دانلود تحقیق رشته عمران بررسی انواع مختلف سیستم های مهاربندی با فرمت ورد

دانلود تحقیق سیستم های مهاربندی عمودی

اختصاصی از هایدی دانلود تحقیق سیستم های مهاربندی عمودی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق سیستم های مهاربندی عمودی


دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند

دانلود تحقیق سیستم های مهاربندی عمودی سازه های بلند در 261 صفحه با فرمت ورد و قابل ویرایش بسیار کامل و جامع و به همراه تصاویر و دیاگرام های مرتبط به هر بخش، عالی برای انجام پروژه ها و مقالات رشته عمران شامل بخش های زیر می باشد:

پیشگفتار

فصل دوم:رفتار سازه ها تحت بار زلزله

فلسفه طراحی سازه های مقاوم تحت بار زلزله

رفتار مناسب سازه تحت بارگذاری متناوب

ضریب رفتار سازه ها

فصل سوم:ملاحظات طراحی سازه ها

مقدمه

اهمیت سیستم سازه ای

عوامل موثر در مقاومت سازه

بارگذاری

فصل چهارم:سیستم های سازه ای

مقدمه

سیستم های سازه ای مختلف

قاب خمشی صلب (MRF)

قابهای مهاربندی شده

قاب مهاربندی شده با قاب صلب

قاب با خرپای کمربندی و میانی

قابهای لوله ای

قاب با سیستم خرپای یک در میان (Staggered truss)

سازه های معلق

سازه های پیوندی

پروژه های عملی

قاب مهاربندی شده

قاب با سیستم خرپای کمربندی

قاب های لوله ای

تغییرات قابل ملاحظه در طرح اصلی برای  فراهم کردن مهاربندی

مقایسه اجمالی سیستم های سازه ای

فصل پنجم:قاب های خمشی صلب

کلیات

رفتار قاب صلب

مقاومت افزون در قابهای خمشی

نتیجه گیری

فصل ششم:قابهای  مهاربندی شده

قابهای مهاربندی شده هم مرکز(CBF)

رفتار مهاربندی های هم مرکز

انواع مهاربندی هم مرکز

ملاحظات طراحی مهاربندی های هم مرکز

بهبود رفتار مهاربندی هم مرکز

نتیجه گیری

قابهای مهاربندی شده خارج از مرکز (EBF)

کلیات

رفتار مهاربندی های خارج از مرکز

استهلاک انرژی در قابهای (EBF )خارج از مرکز

طول تیر پیوند درقابهای EBF ومکانیزم آن

اثر سخت کننده ها بر رفتار تیر پیوند

بهبود رفتار مهاربندی خارج از مرکز

نتیجه گیری

مقایسه رفتار سازه های مهاربندی شده هم مرکز با خارج از مرکز

 کلیات

نکاتی در طراحی قابها

بررسی روند تشکیل مفاصل پلاستیک

نتیجه گیری  

تاثیر آرایش مهاربندی ها در رفتار سازه

کلیات

بحث در مورد بررسی های انجام گرفته

نتیجه گیری

تیرپیوند خمشی در قاب های EBF

کلیات

مدل انتخابی برای تحلیل

نتیجه گیری

بادبندهای زانویی

رفتار بادبند زانویی

بررسی عملکرد قاب زانویی (KBF)

بررسی عملکرد قاب زانویی (CKB)

نتایج کلی از بررسی بادبند زانویی

بادبندهای دروازه ای

کلیات

مختصری از عملکرد بادبندهای 8

عملکرد بادبند دروازه ای

کمانش خارج از صفحه

تاثیر موقعیت گره میانی در مقدار بارکمانش خارج از صفحه

ضریب طول موثر اعضای مهاری

کمانش خارج از صفحه در برابر کمانش داخل صفحه

ملاحضات طراحی

نتیجه گیری

فصل هفتم:قاب با سیستم خرپای کمربندی ومیانی

کلیات

فرضیات در نظر گرفته شده در تحلیل

تعیین موقعیت بهینه برای یک خرپای کمربندی

تعیین موقعیت بهینه برای دو خرپای کمربندی

محل خرپای کمربندی برای سازه 30 طبقه

بررسی نتایج تحلیل

نتیجه گیری

نکات پایانی

فصل هشتم:قابهای لوله ای

کلیات

بررسی لنگر برشی در قاب لوله ای

بررسی رفتار سیستم سازه ای لوله در لوله

کلیات

مشخصات سازه های بررسی شده

ارتفاع بهینه قطع لوله داخلی

نتیجه گیری

بررسی سیستمهای مختلف لوله ای تحت بارهای گرانشی وجانبی

کلیات

مدلهای سازه ای برای ساختمان مورد مطالعه

سیستم لوله ساده

سیستم لوله مهاربندی شده

سیستم لوله دسته شده

سیستم لوله در لوله

مقایسه کارایی سیستم سازه ای لوله ای، لوله در لوله وقاب خمشی

بررسی رفتار سیستم ترکیبی قاب لوله ای،هسته مرکزی وکمربند خرپایی

رفتار سازه لوله ای مهاربندی شده

سازه های با کارایی بالا

فصل نهم:انتخاب سیستم سازه ای

مقدمه

سیستمهای مهاربندی متقاطع

سیستمهای لوله ای با ستونهای نزدیک و تیرهای عمیق

سیستم های غیرلوله ای

منابع

به همراه بیش از 50 تصویر و دیاگرام مرتبط به هر بخش

 

پیشگفتار:

زمین لرزه پدیده ای طبیعی است که با شدت های گوناگون ودر نقاط مختلف کره زمین اتفاق می افتد و به دلیل عدم شناخت لایه های زیرین نمی توان زمان وشدت آن را پیش بینی نمود.

گستره زلزله های واقع شده در نقاط مختلف کره زمین، ارتباطی را بین این نقاط نمایان می نماید. امروزه مشخص شده است که اکثر زلزله های دنیا بر روی نوارهایی به نام کمربند زلزله خیزی واقع شده اند.با توجه به تکتونیک صفحه ای موجود، ایران در حال فشرده شدن بین صفحه اروپا،آسیا وصفحه عربستان است. بهترین نشانه این عمل نیز رشته کوه های زاگرس والبرز می باشدکه در فصل مشترک این صفحات واقع شده اند. اکثر زلزله های مهم ایران نیز در حوالی این فصل مشترک ها رخ داده است.

نقشه پهنه بندی لرزه خیزی ایران نشان دهنده این است که هیچ نقطه ای از کشورمان را نمی توان در مقابل اثر زلزله مصون پنداشت.در شکل( 1-1)نقشه پهنه بندی لرزه خیزی ایران طبق آیین نامه 2800 را مشاهده می نمایید.8

بنابراین طراحی وساخت سازه هایی که بطور مناسب بتوانند در مقابل زلزله ها پایدار باشد الزامی است،این موضوع درک وشناخت رفتار سیستم های سازه‌ای را آشکار می سازد.

برای طراحی یک سازه مقاوم در برابر زلزله رکورد شتاب و مشخصات زمین لرزه نیز نیاز می‌باشد، تا اثرات زمین لرزه بر سازه شناسایی گردد اثرات زمین لرزه بر سازه های طراحی شده از موضوعات جالب توجه می‌باشد، زیرا نتیجه آزمایش واقعی روی سازه های طراحی شده براساس آخرین آیین نامه های تدوین شده هستند.

معمولا هر چاپ جدید از آیین نامه ساختمانی بازتابی از نتایج حاصل از آخرین زمین لرزه های ثبت شده و تجزیه وتحلیل آنها می‌باشد.

به طور کلی دو روش برای ساخت سازه ای مقاوم در برابر زلزله موجود است:18

1-سازه صلب

2-سازه نرم

سازه صلب: در اینگونه سازه ها، پارامتر طراحی تغییر شکلهای جانبی سازه تحت اثرات زلزله است بطوریکه سازه به قدری صلب ساخته می شود که کلیه انرژی را جذب می نماید و بایستی با انتخاب اجزا بسیار مقاوم، توانایی جذب انرژی را به سازه داد.

سازه نرم: در اینگونه سازها، پارامتر انعطاف پذیری سازه در برابر حرکات رفت وبرگشتی که ناشی از خاصیت خمیری آن است مورد استفاده قرار می گیرد. بدین صورت که سازه، انرژی را با حرکات نوسانی و درصد میرایی آزاد می‌کند.

 با توجه به مطالب گفته شده تعیین سیستم مقاوم(این سیستم مقاوم شامل ترکیبی از عناصر سازه ای افقی وعناصر مهاربندی عمودی می‌باشد) در برابر نیروهای جانبی یک موضوع اساسی در طراحی سازه ها می باشد، که در اینجا روی سیستم های مهاربندی عمودی بحث خواهد شد.


فصل دوم:رفتار سازه ها تحت بار زلزله


2-1-فلسفه طراحی سازه های مقاوم تحت بار زلزله (13و9)

برای دست یافتن به سازه ای ایمن واقتصادی ،سازه های طراحی شده در نواحی زلزله خیز با خطر نسبی بالا باید دو معیار عمده طراحی را تامین کنند:

الف)باید در برابر زلزله های خفیف که در طول عمر سازه اتفاق می افتد سختی کافی به منظور کنترل تغییر مکان نسبی بین طبقات و جلوگیری از هر گونه خسا رت سازه ای و غیرسازه ای را داشته و در ضمن باید سختی کافی برای انتقال نیروهای زلزله به فونداسیون را دارا باشند

ب) در برابر زلزله های شدید باید شکل پذیری و مقاومت کافی برای جلوگیری از خرابی کامل و فروریزی سازه را داشته باشند.

بنابراین طراحی در برابر زلزله به هیچ وجه به این معنی نمی باشد که در برابر هر زلزله ای سازه اصلا خسارت ندیده ووارد مرحله پلاستیک نشود،بلکه به منظور اقتصادی کردن طرح باید در برابر زلزله های شدید به سازه اجازه داده شود که وارد مرحله غیرخطی شده وبا تغییر شکل های پلاستیک به جذب واستهلاک انرژی پردازد و به همین منظور هم در آیین نامه های تحلیل نیروی زلزله، نیروی بدست آمده از تحلیل طیف الاستیک را به یک ضریب کاهش تقسیم کرده و سازه را برای برش پایه کمتری طرح می کنند.

این فلسفه ایجاب می‌کند که در طراحی سازه های مقاوم در مقابل زلزله به دو مطلب اساسی زیر توجه شود:

الف) ایجاد سختی و مقاومت کافی در سازه جهت کنترل تغییر مکان جانبی، تا از تخریب اعضا سازه ای تحت زلزله های خفیف، جلوگیری به عمل آید.

ب)ایجاد قابلیت شکل پذیری واتلاف انرژی مناسب در سازه تا در یک زلزله شدید از فرو ریزش سازه جلوگیری گردد.

تامین سختی مناسب و بخصوص سختی جانبی سازه از عوامل اساسی طراحی ساختمانها می‌باشد. در حد نهایی مقاومت، تغییر شکل های جانبی باید طریقی محدود گردند که اثرات ثانویه ناشی از بارگذاری قائم  باعث شکست وانهدام سازه نگردند.

در حد بهره برداری ،اولا تغییر شکل ها باید به مقادیری محدود شوند که اعضای غیرسازه ای نظیر درها و آسانسورها، بخوبی عمل نمایند.ثانیا باید برای جلوگیری از ترک خوردگی وافت سختی، از ازدیاد و تشدید تنش در سازه جلوگیری نمود و از توزیع بار بر روی اعضای غیرسازه ای نظیر          میانقابها ونماها خودداری کرد. ثالثا سختی سازه باید در اندازه ای باشدکه حرکتهای دینامیکی آن محدود شده و باعث اختلال ایمنی وآرامش استفاده کنندگان وایجاد مشکل در تاسیسات حساس ساختمان نگردد.

کنترل تغییر مکانهای جانبی ازاهمیت بسیاری برخوردار است. لازم به تاکید است که گرچه برای شاخص جابجایی مقادیری نظیر  پیشنهاد شده واستفاده از آن هم متداول است، ولی این مقدار الزاما شرایط ایمنی وآسایش دینامیکی را تامین نمی کند چنانچه جابجایی سازه بیش از حد باشد میتوان با اعمال تغییراتی در شکل هندسی سازه، افزایش سختی خمشی اعضاء افقی یا سخت ترکردن گره ها و یا حتی با شیب دادن ستونهای خارجی، جابجایی را کاهش داد...

.

.

-7-3-عملکرد بادبند دروازه ای

در شکل (6-30) هندسه نمونه اینگونه بادبندی مشاهده می شود. با ایجاد شکستگی در امتداد میله AC  بادبند 8(شکل 6-29) و تبدیل آن به صورت میله شکسته AFC (شکل 6-30)، فضای وسیع تری جهت تعبیه باز شو ایجاد میشود. موقعیت اتصال اعضای مهاری به یکدیگر (گره های میانی)، فضای بازشوی قاب را تعیین می‌کند. هر چه گره میانی به سمت گوشه قاب حرکت کند از بازشوهای بزرگتری می توان استفاده کرد.

در شکل (6-30) با فرض تامین پایداری کافی در جهت خارج از صفحه و ممتدبودن تیر در نقطه C، خرابی سازه که براساس کمانش میله های فشاری و تشکیل مفصل پلاستیک درنقطه C، متصور است مشاهده میشود. خطوط خط چین، هندسه قبل از اعمال بارجانبی و خطوط توپر، نحوه تغییر شکل قاب تحت اثر بار جانبی اعمال شده به آن را نشان میدهد ]36[.

با فرض اتصالات مفصلی، مسیر انتقال نیروهای محوری در دو نوع بادبند 8 و دروازه ای در شکل (6-31) ملاحظه می شود. نکته جالب در بادبند نوع دروازه ای این است که تحت نیروی جانبی به سمت راست، هر سه میله چپ درفشار و هر سه میله سمت راست در فشار قرار گرفته اند و ستون چپ در کشش وستون سمت راست در کشش واقع شده است، که خلاف انتظار در نگاه اول است. مکانیزم خرابی سازه در صفحه قاب با فرض تامین پایداری کافی در جهت خارج از صفحه با کمانش اعضای فشاری و تشکیل مفصل پلاستیک در وسط تیر حاصل می گردد. این امکان نیز وجود داردکه تحت اثر نیروهای جانبی مهاری های فشاری دچار کمانش خارج از صفحه شده و گره مفصل کننده این مهاری ها به یکدیگر (گره میانی) از صفحه قاب بیرون رود....


دانلود با لینک مستقیم


دانلود تحقیق سیستم های مهاربندی عمودی

نقش سیستم های مختلف مهاربندی در مقاوم سازی سازه های فولادی(فایل ورد)

اختصاصی از هایدی نقش سیستم های مختلف مهاربندی در مقاوم سازی سازه های فولادی(فایل ورد) دانلود با لینک مستقیم و پر سرعت .

نقش سیستم های مختلف مهاربندی در مقاوم سازی سازه های فولادی(فایل ورد)


نقش سیستم های مختلف مهاربندی در مقاوم سازی سازه های فولادی(فایل ورد) آشناترین و مرسومترین سیستم مهاربندی در سازه های فولادی، مهاربند ضربدری هم مرکزCBFمی‌باشد که با وجود سختی مناسب از لحاظ شکل پذیری و جذب انرژی، عملکرد عمدتأ ضعیفی دارد. از سوی دیگر قاب‌های خمشیMRF با وجود شکل پذیری بسیار بالا، از نظر سختی و کنترل تغییر مکان، به هیچ وجه رفتار مناسبی ندارند. سیستمهایی که بر هر دو مشکل فوق غلبه می کنند، به دو طیف عمده سیستمهای مهاربندی خارج از EBF مرکز و سیستم مهاربندی زانوییKBF تقسیم می شوند. سیستمEBF علی رغم شکل پذیری بسیار عالی،سختی نسبتاً مناسب و تسهیلاتی که به لحاظ ایجاد بازشوها در فرم و نمای معماری ایجاد می کند، به دلیل مشکل ترمیم تیر پیوند Link پس از یک زلزله شدید و مشکلات طرح و اجرای خود پیوند، نقطه ضعفهایی هم دارد. اما در سیستمKBF المان مستهلک کننده انرژی، عضو زانویی است که مانند یک فیوز شکل پذیری عمل می کند و تشکیل مفاصل پلاستیک محدود به آن است. عضوی که تعویض آن )جهت بهره برداری مجدد از سازه)، پس از یک زلزله شدید، سهل تر و عملی تر خواهد بود.
در این تحقیق، ضمن یک بررسی همه جانبه روی سیستمهای مختلف مهار بندی و بیان نقاط ضعف و قوت هر یک توجهی خاص به سیستم مهار بندی زانویی و خصوصیات عالی و ممتاز این سیستم، خواهیم داشت.

دانلود با لینک مستقیم


نقش سیستم های مختلف مهاربندی در مقاوم سازی سازه های فولادی(فایل ورد)

پایان نامه ی مقایسه رفتار قاب فولادی با مهاربندی ضد کمانش و مهاربندی معمولی. pdf

اختصاصی از هایدی پایان نامه ی مقایسه رفتار قاب فولادی با مهاربندی ضد کمانش و مهاربندی معمولی. pdf دانلود با لینک مستقیم و پر سرعت .

پایان نامه ی مقایسه رفتار قاب فولادی با مهاربندی ضد کمانش و مهاربندی معمولی. pdf


پایان نامه ی مقایسه رفتار قاب فولادی با مهاربندی ضد کمانش و مهاربندی معمولی. pdf

 

 

 

 

 

 

 

نوع فایل: pdf

تعداد صفحات: 100 صفحه

 

نکته مهم: برای دریافت فایل پایان نامه به صورت word «قابل ویرایش» با ما تماس بگیرید.

 

پایان نامه برای دریافت درجه ی کارشناسی ارشد «M.SC»

 

چکیده:

بادبند، به عنوان نوعی سیستم کنترل غیر فعال، می‌تواند نقش موثری در ایجاد مقاومت سازه در برابر نیروهای جانبی مانند زلزله داشته باشد. یکی از روش های بهره گیری بیشتر و اقتصادی تر از قابلیت بادبند ها استفاده از ظرفیت غیر ارتجاعی آنها است. بادبند های معمولی تحت کشش دارای عملکرد خوبی هستند، ولی در زیر فشار دچار کمانش شده، شکل پذیری خوبی ندارند. بادبند های کمانش ناپذیر برعکس با جلوگیری از کمانش پیش از تسلیم بادبند باعث افزایش شکل پذیری می شوند.. جلوگیری از کمانش در این نوع بادبند با محصور نمودن هسته فولادی بادبند در بتن که به‌نوبه خود در یک مقطع فولادی قرار گرفته است، انجام می شود. بدین ترتیب بادبند در فشار و کشش بطور مشابه عمل می‌کند. بدین جهت بادبندهای کمانش ناپذیر قابلیت استهلاک انرژی بیشتری داشته و باعث افزایش ایمنی سازه می‌شوند. از طرف دیگر چون نحوه کاربرد این نوع بادبند شبیه بادبند های معمولی است، استفاده از آن در سازه ها نیازمند تکنولوژی جدیدی نمی باشد قاب های مهاربندی شده با المان های کمانش ناپذیر (BRBF) به عنوان یک سیستم مقاوم لرزه ای شناخته می شوند. با توجه به این مقدمات، بررسی بادبند های کمانش ناپذیر به منظور ارتقای کیفیت و کارایی آنها و بومی کردن تکنولوژی مربوطه در کشور لرزه خیزی مانند ایران حائز اهمیت بوده، در این پایان نامه مورد توجه است .

در این تحقیق  نوع روش بصورت تئوری و غیر آزمایشگاهی بوده است .  به دلیل عدم دسترسی به سازه و بادبندهای BRB واقعی، رفتار آنها با استفاده از یک نرم افزار شبیه سازی مثل abaquse مورد شبیه سازی قرار گرفته تا بتوان رفتار قاب  و همچنین سایر کنترلر های قبلی را روی این سازه مورد بحث و بررسی قرار داد.  به منظور بررسی عملکرد مهاربندهای کمانش ناپذیر، یک مدل اجزای محدود از این المان ارائه شده است. بعد از معرفی اجزاء با در نظر گرفتن تمامی مواد Abaquse  مهاربندهای کمانش ناپذیر، یک نمونه از این نوع مهاربند در نرم افزار اجزاء محدود مورد استفاده مدلسازی میشود. بعد از تأیید مدل نمونه واقعی با استفاده از نتایج آزمایشگاهی در دسترس که توسط تحلیل غیر خطی دینامیکی صورت میپذیرد، مدل ساده مورد نظر ساخته میشود این قاب  تحت بارگذاری سیکلیک محوری مورد آنالیز قرار گرفته و قاب با هر دو نوع مهاربند تحت تحلیل قرار گرفته و نتایج با هم مقایسه می شود و روشی برای تهیه یک مدل ساده از مهاربندهای کمانش ناپذیر ارائه میگردد. در مطالعه حاضر رفتار مهاربند BRB  بعنوان میراگر هیسترتیک بررسی و عملکرد مطلوبی در جذب انرژی مشاهده گردید

 

مقدمه:

قاب های فولادی مهاربندی شده هم محور یکی از متداول ترین سیستم های قاب فولادی مقاوم خمشی محسوب می شود. به طور کلی قاب های مهاربندی شده هم محور نسبت به بسیاری از سیستم های مقاوم خمشی دارای کارایی بالایی می باشد که دلیل آن توانایی اعضای مهاربند در کنترل تغییرمکان های جانبی قاب می باشد. فولاد مورد استفاده برای تیرها و ستون های قاب های مهاربندی شده هم محور به لحاظ استفاده از اشکال هندسی ظریف و محاسباتی، از نظر اقتصادی نیز بسیار مقرون به صرفه می باشند. طراحان ساختمان نیز اغلب از قاب های مهاربندی شده آماده در محاسبات استفاده می کنند.

یکی از مهمترین نقاط ضعف این نوع مهاربندها مقاومت کمانشی پایین به دلیل لاغری اعضای مهاربند می‌باشد. انرژی بسیار شدید و ناگهانی که در حین وقوع زمین لرزه به اعضای مهاربند وارد می شود می تواند باعث کمانش و تغییرشکل غیر ارتجاعی بزرگ در مهاربند و اتصالات آن گردد. لذا رفتار نامطلوب عمده ای که در مهاربندها مشاهده می شود کمانش مهاربند فشاری می باشد و این امر باعث کاهش شکل پذیری و ظرفیت استهلاک انرژی در سازه به دلیل اثر ثانوی تغییرشکل های غیرخطی هندسی می گردد . این موضوع در بارگذاری های تناوبی مانند زلزله با توجه به ماهیت کاهش بیشتر سختی تحت بارهای دینامیکی لرزهای، از اهمیت ویژه ای برخوردار می باشد. استفاده از مهاربندی که در فشار و کشش رفتار یکسانی داشته باشد و کمانش نکند ، همیشه مطلوب طراحان سازه بوده است. در حقیقت بهسازی قاب های سازه ای با این روش، رفتارهای نامناسب زیر را اصلاح می کند:

  1. کاهش مقاومت
  2. کاهش سختی
  3. کاهش شکل پذیری

 

فهرست مطالب:

فصل اول : مقدمه و اهداف

1-1-  مقدمه  

1-2-  اهداف تحقیق  

1-3-  مباحث پایان نامه  

فصل دوم : مروری بر تحقیقات مرتبط

2-1-  مقدمه  

2-2-  مروری بر مطالعات آزمایشگاهی و تحلیلی  

فصل سوم : مروری بر ادبیات فنی

3-1-  مقدمه  

3-2-  مهاربندها  

3-3-  عملکرد مهاربندهای همگرا و واگرا  

3-4-  نحوه جایگذاری مهاربندها  

3-5-  مهاربندهای کمانش ناپذیر  

3-6-  اجزای تشکیل دهنده مهاربند کمانش ناپذیر  

3-6-1-  هسته فلزی محصور شده  

3-6-2-  هسته فلزی محصور نشده 

3-6-3-  ماده نچسب  

3-6-4-  ناحیه اتصال  

3-6-5-  غلاف محصور کننده  

فصل چهارم : روش مدلسازی اجزای محدود قاب مهاربندی کمانش ناپذیر

4-1-  مقدمه  

4-2-  مروری بر روش اجزای محدود  

4-3-  معرفی اجمالی نرم افزار اجزای محدود Abaqus  

4-4-  فرآیند مدلسازی در نرم افزار اجزای محدود Abaqus  

4-5-  مدلسازی اجزای محدود مهاربند فولادی  

4-6-  پیکربندی هندسی مهاربند فولادی در محیط نرم افزار  

4-7-  مدلسازی المان های تشکیل مهاربند فولادی  

4-8-  روش مدلسازی مصالح تشکیل دهنده مهاربند فولادی  

4-9-  مدلسازی رفتار تماسی بین فولاد و مصالح پرکننده بتنی  

4-10-  روش بارگذاری و ایجاد شرایط مرزی  

4-11-  روش مش بندی مهاربند فولادی  

4-12-  روش آنالیز و استخراج نتایج تحلیل  

فصل پنجم : مقایسه رفتار مهاربند کمانش ناپذیر و معمولی به روش اجزای محدود

5-1-  مقدمه  

5-2-  معرفی مدل های اجزای محدود مورد بررسی  

5-3-  بررسی رفتار عضو مهاربند کمانش ناپذیر و مهاربند معمولی  

5-4-  بررسی رفتار قاب با مهاربند کمانش ناپذیر و مهاربند معمولی  

فصل ششم: نتیجه گیری کلی و پیشنهادات

6-1-  مقدمه  

6-2-  نتیجه گیری نهایی  

6-3-  پیشنهادات برای تحقیقات آتی  

فهرست مراجع  

 

فهرست اشکال:

شکل 2-1-  جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Sabelli, R, Mahin, S, Chang, C,  2003)  

شکل 2-2-  پیکر بندی ساختمان مورد مطالعه توسط(Sabelli, R, Mahin, S, Chang, C,  2003)  

شکل 2-3-  جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط(Kiggins, S, Uang, C,  2006)  

شکل 2-4-  نمای هندسی ساختمان مورد مطالعه توسط(Kiggins, S, Uang, C,  2006)  

شکل 2-5-  شکل مقطع عرضی ساختمان مورد مطالعه توسط(Choi, H, Kim, J,  2006)    

شکل 2-6-  جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Asgarian, B, Shokrgozar, HR, 2008)  

شکل 2-7-  پیکر بندی پلان ساختمان مورد مطالعه توسط (Asgarian, B, Shokrgozar, HR, 2008)  

شکل 2-8-  جزئیات قاب و مهاربند کمانش ناپذیر مورد مطالعه توسط (Chou, C, Chen, P, 2009)  

شکل 2-9-  پیکر بندی قاب مورد مطالعه توسط (Nguyen, A, Chintanapakdee, C, Hayashikawa, T, 2010)  

شکل 2-10-   جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Wigle, V, Fahnestock, L, 2010)  

شکل 2-11-   شکل قاب مهاربندی کمانش ناپذیر مورد مطالعه توسط (Wigle, V, Fahnestock, L, 2010)  

شکل 2-12-  جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Yu, YJ, et al, 2011)  

شکل 2-13-  شکل مدل اجزای محدود مورد مطالعه توسط (Yu, YJ, et al, 2011)  

فصل سوم

شکل 3-1-  مهاربندهای همگرا  

شکل 3-2-  مهاربندهای واگرا  

شکل 3-3-  رفتار چرخه ای پایدار مهاربند کمانش ناپذیر در مقابل مهاربند کمانش یافته  

شکل 3-4-  اجزای مختلف مهاربند مقید شده در برابر کمانش  

شکل 3-5-  اشکال مختلف هسته فولادی و محفظه محصور کننده  

شکل 3-6-  نمایش قسمت محصور نشده فولادی  

شکل 3-7-  نمایش فضای خالی داخلی به منظور رفتار مطلوب مهاربند درکشیدگی و فشردگی فولاد هسته  

فصل چهارم

شکل 4-1-  منحنی تنش - کرنش مصالح فولادی در قاب مهاربندی کمانش ناپذیر  

شکل 4-2-  منحنی تنش - کرنش فشاری بتن مورد استفاده برای مصالح پرکننده  

شکل 4-3-  منحنی تنش - کرنش کششی بتن مورد استفاده برای مصالح پرکننده  

شکل 4-4-  جزئیات اعمال بارگذاری نمونه اولیه قاب مهاربندی کمانش ناپذیر  

شکل 4-5-  شکل مش بندی شده نمونه اولیه قاب مهاربندی کمانش ناپذیر  

فصل پنجم

شکل 5-1-  قاب مهاربندی کمانش ناپذیر مورد مطالعه با مقیاس کامل  

شکل 5-2-  مهاربند کمانش ناپذیر مورد مطالعه  

شکل 5-3-  نمای سه بعدی مدل a1 به صورت مهاربند معمولی

شکل 5-4-  نمای سه بعدی مدل a2 به صورت مهاربند کمانش ناپذیر  

شکل 5-5-  کانتور تنش مهاربند معمولی  

شکل 5-6-  کانتور تنش مهاربند کمانش ناپذیر  

شکل 5-7-  شکل انحنای به وجود آمده در مهاربند معمولی  

شکل 5-8-  توزیع تنش در مقطع فولادی در مهاربند کمانش ناپذیر  

شکل 5-9-  نمودار بار - جابجایی مدل a1 و a2  

شکل 5-10-  نمای سه بعدی مدل a3 به صورت قاب با مهاربند معمولی  

شکل 5-11-  نمای سه بعدی مدل a4 به صورت قاب با مهاربند کمانش ناپذیر  

شکل 5-12-  کانتور تنش قاب فولادی با مهاربند معمولی  

شکل 5-13-  کانتور تنش قاب فولادی با مهاربند کمانش ناپذیر  

شکل 5-14-  نمودار برش پایه - جابجایی مدل a3 و a4  

 

منابع و مأخذ:

[1]        American Institute of Steel Construction, Inc. (AISC). (1999). Load and Resistance Factor Design Specification for Structural Steel Buildings. AISC, Chicago, IL, December 27.

[2]        American Society for Testing and Materials (ASTM). (2003). Annual Book of ASTM Standards, Metals Test Methods and Analytical Procedures. Section 3, Vol. 3.01, West Conshohocken, Pennsylvania.

[3]        Barsom, J. M., and Rolfe, S. T. (1999). Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics. Third Edition, ASTM, West Conshohocken, PA.

[4]        Bruneau, M., Tremblay, R., Timler, P., and Filiatrault, A. (1995). Performance of steel structures during the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, volume 22, number 2, pages 338-360.

[5]        Elghazouli, A. Y. (2003). Seismic design procedures for concentrically braced frames. Proceedings of the Institution of Civil Engineers: Structures and Buildings. volume 156, issue 4. Pages 381-394.

[6]        Elsesser, E. (1986). A survey of seismic structural systems and design implications. ATC-17, Proceedings of a Seminar and Workshop on Base Isolation and Passive Energy Dissipation, San Francisco, CA, pages 51-62.

[7]        El-Tayem, A. A., and Goel, S. C. (1986). Effective Length Factor for the Design of X-bracing Systems. Engineering Journal, AISC, vol. 24, page 41-45.

[8]        El-Tayem, A. A., and Goel, S. C. (1986). Cyclic Load Behavior of Angle X-Bracing. Journal of Structural Engineering, vol. 112, Issue 11, pages 2528-2539.

[9]        Eurocode 8. (1998). Structures in Seismic Regions, Part 1.1: General Rules and Rules for Buildings. Commision of the European Communities, European Committee for Standardisation, ENV 1998-1-1.

[10]      Hanson, R., and Higginbotham, A. B. (1976). Axial hysteretic behavior of steel members. ASCE, Journal of the Structural Division, volume 102, number 7, pages 1365-1381.

[11]      Hassan, O. F., and Goel, S. C. (1991). Modeling of Bracing Members and Seismic Behavior of Concentrically Braced Steel Structures. Research Report No. UMCE 91- 1, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan.

[12]      Higginbotham, A. B. (1973). The Inelastic Cyclic Behavior of Axially-Loaded Steel Members. Report No.UMEE-73R1, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan.

[13]      Ikeda K. and Mahin S. A. (1984). Phenomenological modeling of steel braces under cyclic loading. Report no. UCB/EERC 84/09, Earthquake Research Center, University of California, Berkeley, CA.

[14]      Ikeda K. and Mahin S. A. (1984). A refined physical theory model for predicting the seismic behavior of braced steel frames. Report no. UCB/EERC 84/12, Earthquake Research Center, University of California, Berkeley, CA.

[15]      Kathib I. F., Mahin, S. A. (1987). Dynamic inelastic behavior of chevron braced steel frames. Fifth Canadian Conference on Earthquake Engineering, Balkema, Rotterdam, pages 211-220.

[16]      Kim, H. I., and Goel, S. C. (1996). Upgrading of Braced Frames for Potential Local Failure. Journal of Structural Engineering, May 1996, pages 470-475.

[17]      Leowardi, L. S., Walpole, W. R. (1996). Performance of steel brace members. Research Report no. 96-03, Christchurch, New Zealand: Department of Civil Engineering, University of Canterbury.

[18]      Naeim, F. (1989). The Seismic Design Handbook. Structural Engineeging Series, Van Nostrand Reinhold, New York.

[19]      Nakashima, M., and Wakabayashi, M. (1992). Analysis and design of steel braces and braced frames in buildings structures. Stability and ductility of steel structures under cyclic loading, pages 309-321.

[20]      Perotti, F., and Scarlassara, P. (1991). Concentrically Braced Steel Frames under Seismic Actions: Non-linear Behavior and Design Coefficients. Earthquake Engineering and Structural Dynamics, vol. 20, pages 409-427.

[21]      Remennikov, A., and Walpole W. (1995). Incremental model for predicting the inelastic hysteretic behavior of steel bracing members. Research Report no. 95-6. Department of Civil Engineering, University of Canterbury, Christchurch, New Zeland.

[22]      Shing, P., Bursi, O., and Vannan, T. (1994). Pseudodynamic test of a concentrically braced frame using substructuring techniques. Journal of Constructional Steel Research, volume 29, number 1-3, pages 121-148.

[23]      Wakabayashi, M., Nakamura, T., and Yoshida, N. (1977). Experimental Studies on the Elastic-Plastic Behavior of Braced Frames under Repeated Horizontal Loading. Bulletin, Disaster Prevention Research Institute, Kyoto University, vol. 27, no. 251, pages 121-154.

[24]      Yanev, P, Gillengerten, J. D., and Hamburger, R. O. (1991). Performance of Steel Buildings in Past Earthquakes. American Iron and Steel Institute (AISI) and EQE Engineering, Inc.


دانلود با لینک مستقیم


پایان نامه ی مقایسه رفتار قاب فولادی با مهاربندی ضد کمانش و مهاربندی معمولی. pdf