هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق درمورد خوردگی در دیگ بخار

اختصاصی از هایدی تحقیق درمورد خوردگی در دیگ بخار دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

عوامل خوردگی کوره دیگ بخار:

یکی از مشکلات اساسی که می تواند باعث بروز مشکل برای کوره ها باشد، خوردگی در نقاط و وسایل مختلف آن است که ضمن هدر رفتن

مقدار زیادی انرژی، آسیب های مکانیکی متعددی به کوره وارد می

کند. از آنجا که هر کوره از بخش های متعددی همچون بدنه، اطاقک

احتراق (Fire Chamber)، دودکش، مشعل و سایر تجهیزات جانبی تشکیل

شده، لذا علل خوردگی و راه حل های پیشنهادی در هر یک از بخش ها

به طور مجزا مورد بحث و بررسی قرار می گیرد.

بدنه کوره :

معمولاً بدنه یا دیواره خارجی کوره ها را از ورقه استیل16/3 و کف

آن را از ورقه 4/1 می سازند.

در طراحی ها عموماً اتلاف حرارتی از بدنه کوره حدود 2 درصد منظور

می شود. نوع و ضخامت عایق کاری بدنه داخلی کوره باید طوری در نظر

گرفته شود که دمای سطح خارجی کوره بیش از (1800° F) نشود. اصولاً

عایق کاری و عایق های به کار رفته در کوره ها از نظر سرویس دهی

مناسب، عمر معینی دارند و به مرور زمان ساختمان کریستالی آنها

تغییر یافته و ضخامت آنها کم می شود و این تغییرات ساختمانی سبب

تغییر ضریب انتقال حرارت و اتلاف انرژی به بیرون خواهد بود.

مطالعات میکروسکپیک و کریستالوگرافیک چند نمونه عایق کار کرده،

با نوع تازه آن موید این مطلب است. در صورتی که عایق دیواره های

کوره بر اثر بنایی ناصحیح، عدم انجام صحیح Curing بر مبنای

دستورالعمل، حرارت زیاد و یا شوک های حرارتی ترک بردارد، نشت

گازهای حاصل از احتراق که عبارتند از: So x، No x، N2،Co2

(درصورتی که نفت کوره به عنوان سوخت مصرف شود) و بخار آب در

لابلای این ترک ها و تجمع آنها در لایه بین بدنه کوره و عایق

دیواره و سرد شدن تدریجی آنها تا دمای نقطه شبنم، باعث خوردگی

بدنه می شود.

تداوم این امر ضمن اتلاف مقدار بسیار زیاد انرژی (از طریق بدنه

کوره به محیط اطراف)، باعث ریختن عایق و در نتیجه اتلاف بیشتر

انرژی و گسترش خوردگی بر روی بدنه کوره و سایر نقاط آن خواهد شد.

در یک بررسی ساده بر روی کوره ای که چندین سال از عمر عایق آن می

گذشت ملاحظه شد که دمای اندازه گیری شده واقعی سطح کوره در اکثر

نقاط بسیار بیشتر از میزان طراحی است. این مقدار در بعضی از

موارد به (1800° F) نیز می رسید.

در این کوره ضمن جدا شدن عایق از دیواره کوره و گسترش خوردگی در

نقاط مختلف بدنه، گرم شدن بدنه کوره نیز موجب خم شدن دیواره ها

شده و سرعت خوردگی را افزایش داده و باعث خرابی قسمت های مختلف

کوره شده است. به طور کلی برای جلوگیری و یا کاهش مشکلات خورندگی

بر روی بدنه کوره لازم است به هنگام تعمیرات اساسی ضمن توجه به

عمر عایق دیواره در صورتی که عمر آنها از حد معمول گذشته باشد

(البته با توجه به درجه حرارتی که درهنگام کار کردن واحد درمعرض

آن بوده اند) آنها را با عایق مناسب و استاندارد تعویض کرد و در

صورت وجود ترک (قبل و یا بعد از بنایی)، محل ترک ها را با الیاف

مخصوص KAOWOOL پر کرد. همچنین در بنایی، عملیات Curing را مطابق

دستور العمل انجام داد تا پیوند هیدرولیکی در عایق های بکار رفته

در بنایی، به پیوند سرامیکی تبدیل شده و میزان رطوبت باقیمانده

در دیواره از 0.4 gr/m2 بیشتر نشود.

البته چنانچه Ceramic Fiber (الیاف سرامیکی) به عنوان عایق

دیواره کوره مورد استفاده قرار گیرد، بدلیل عدم نیاز به Curing و

Drying و سبکی وزن، مشکلات احتمالی استفاده از عایق های نیازمند

به Curing را نخواهیم داشت. ضمن این که عمر بیشتر و چسبندگی

بهتری به دیواره، نسبت به دیگر عایق های موجود دارند.

تیوب ها یا لوله های داخل کوره:

معمولاً کوره ها متشکل از دو بخش RADIATION و CONVECTION هستند

که بایستی ظرفیت گرمایی (DUTY) کوره از نظر درصد، تقریباً به

نسبت70 و30 درصد بین این دو بخش تقسیم شود.

از آنجا که لازم است سیال به اندازه دمای مورد نظرگرم شود بایستی

حرارت مورد نیاز خود را از طریق هدایتی از لوله ها و تیوب های

داخل کوره دریافت کند، این لوله ها نیز حرارت مورد نیاز برای این

انتقال حرارت را از طریق تشعشعی و جابجایی در اثر احتراق سوخت در

داخل کوره جذب می کنند. انتخاب آلیاژ مناسب جهت لوله با توجه به

نوع سیال و ترکیبات آن و میزان حرارت دریافتی توسط لوله و در

معرض شعله قرار گرفتن از اهمیت بسزایی برخوردار است.

مسائلی که به بروز مشکلاتی برای تیوب ها منجر می شود عبارتند از:

سرد و گرم شدن ناگهانی لوله، گرم شدن بیش از حد لوله و بالا رفتن

دمای تیوب از حداکثر مجاز آن، در معرض شعله قرار گرفتن و برخورد

شعله به لوله (impingement) ، ایجاد یک لایه کُک بر روی جداره

داخلی لوله، Carborization، Hogging، Bending، Bowing، Sagging،

Creeping، خوردگی جداره داخلی لوله بر اثر وجود مواد خورنده در

سیال عبوری، خوردگی جداره بیرونی لوله در اثر رسوبات حاصل از

احتراق سوخت مایع بر روی جداره خارجی لوله، کارکرد لوله بیش از

عمر نامی آن (80 هزار الی 110 هزار ساعت)

سرد و گرم شدن ناگهانی لوله، ممکن است به Creeping (خزش) که

نتیجه آن ازدیاد قطر لوله می باشد منجر شود که در این صورت

احتمال پارگی لوله و شکنندگی آن را افزایش می دهد. چنانچه در اثر

Creeping مقدار ازدیاد قطر از 2 درصد قطرخارجی لوله بیشتر شود،

لوله مزبور بایستی تعویض شود.

در یک اندازه گیری عملی که برای برخی از تیوب های هشت اینچی و شش

اینچی کوره (کوره تقطیر در خلا) H-151 در هنگام تعمیرات اساسی

صورت پذیرفت، محاسبات زیر بدست آمد:

برای تیوب "8

OD = 8.625 (اصلی)

OD = 8.75 (اندازه گیری شده)

(OD = (0.125 (افزایش قطر لوله)

(OD ALLOWABLE = (8.625x2%=0.1725

هنوز می توان از تیوب مزبور استفاده کرد.

برای تیوب "6

OD = 8.625 (اصلی)

OD = 8.675 (اندازه گیری شده)

(OD = (0.05 (افزایش قطر لوله)

(OD ALLOWABLE = (6.625x2%=0.1325

که هنوز می توان از تیوب شش اینچی مزبور استفاده کرد.

همان طور که مشخص است تیوب 8 حدوداً بیش از دو برابر تیوب 6

ازدیاد قطر داشته است.

برای لوله "6

کوره H-101 (اتمسفریک)

OD =6.625 (اصلی)

OD = 6.635 (اندازه گیری شده)

OD =0.01 (اندازه قطر لوله)

(OD ALLOWABLE = (6.625x2%=0.1325

بالا نگه داشتن دمای پوسته تیوب ها سبب کاهش مقاومت لوله ها و

کاهش عمر مفید و گارانتی حدود یکصد هزار ساعتی آنها می شود.

تجربه نشان داده است که اگر به مدت 6 هفته سطح خارجی (پوسته)

لوله ای 900°C بیش از مقدار طراحی در معرض حرارت قرار بگیرد، عمر

تیوب ها نصف می شود.

یکی دیگر از مشکلات پیش آمده برای لوله ها، برخورد شعله به لوله

(IMPINGEMENT) است، که باعث OVER HEATING کوره و در نهایت HOT

SPOT می شود. این امر می تواند ضمن لطمه زدن در محل برخورد شعله

به لوله، باعث تشدید عمل کراکینگ مواد داخل لوله شود و مواد

مزبور به دو قسمت سبک و سنگین تبدیل گردند.

مواد سنگین به جداره داخلی لوله چسبیده و کک ایجاد می کنند. به

ازای تشکیل یک میلی لیتر ضخامت کک با توجه به ضریب هدایتی کک که

برابر مقدار خاصی می باشد برای یک شارژ حرارتی معمول در قسمت

تشعشعی کوره H-101 (اتمسفریک) می باشد، معادل فرمول زیر است:

می بایستی 300°C دمای پوسته تیوب بالاتر رود تا سیال موجود در

تیوب به همان دمای موردنظر برسد. در این صورت ملاحظه می شود بالا

رفتن دمای تیوب به چه میزان اتلاف سوخت و انرژی، داشته و به طور

کلی به مرور زمان چه لطمه ها و آسیب هایی به کل کوره وارد می

شود. به عبارت دیگراختلاف دمای پوسته تیوب های کوره که در طراحی

عموماً 1000°F بالاتر از دمای متوسط سیال درون آن در نظر گرفته

می شود، به مرور زمان با تشکیل کک (با رسوبات بیرونی) بیشتر می

شود.

مشکل دیگر که به علت دمای بالا برای تیوب های کوره ها ایجاد می

شود خمیدگی در جهت های مختلف این تیوب هاست.

یکی دیگر از مسائلی که باعث خم شدن و شکستگی لوله ها می شود

پدیده کربوریزیشن (carborization) است که بر اثر ترکیب کربن با

آهن پدید می آید: این واکنش که باعث تولید کربور آهن خواهد شد در

دمای بالاتر از 7000°c ایجاد می شود 7000°C)تا 14000°C). این

حالت عمدتاً در زمان Curing و drying کوره پدید می آید. البته

Hot spot نیز بیشتر در این زمان ها اتفاق می افتد.

وجود ناخالصی های مختلف مثل فلزات سدیم، وانادیم، نیکل و غیر...،

فلزاتی مثل گوگرد و ازت به صورت ترکیبات آلی در سوخت های مایع،

مسائل عدیده ای را باعث می شوند، که از آن جمله کاهش انتقال

حرارت از طریق سطح خارجی تیوب به سیال درون تیوب است که به علت

تشکیل رسوبات مربوط به ناخالصی های مزبور بخصوص رسوبات فلزی بر

روی تیوب هاست. به همین دلیل برای رسیدن به دمای مورد نظر سیال

موجود در لوله، مجبور به مصرف سوخت بیشتر خواهیم شد. در نتیجه

مشکلات ایجاد گرمای بیشتر در کوره و مسائل زیست محیطی در اثر

تشکیل SOX، NOX و ... را خواهیم داشت. از طرفی به دلیل نشست این

رسوب ها بر روی تیوب ها مسئله خوردگی و سوراخ شدن پیش خواهد آمد.

علت این خوردگی که از نوعHigh temp corrosion می باشد پدیده

سولفیدیش است، که در دماهای بین630°C تا700°C بوقوع می پیوندد.

همان طور که گفته شد علت اصلی آن وجود عناصر وانادیم، گوگرد،

سدیم و نیکل به همراه گازهای حاصل از احتراق سوخت است.

فلزات ذکر شده (بصورت اکسید) به کمک این گازها بالا رفته و بر

روی تیوب های قسمت تشعشع و جابه جایی می نشینند. خوردگی و سوراخ

شدن تیوب، بر اصل اکسید شدن و ترکیب عناصر مزبور باآلیاژ تیوب

استوار بوده که باعث ایجاد ترکیبات کمپلکس با نقطه ذوب پایین می

شود.

ترکیب اولیه پس از Na2SO4، سدیم وانادایت به فرمول Na2O6V2O5 است

که نقطه ذوب آن 6300°C می باشد. عمده ترکیبات دیگر که شامل

کمپلکسی از ترکیب پنتا اکسید وانادیم و سدیم است در شرایطی به

مراتب ملایم تر و درجه حرارتی پایین تر ذوب می شوند. برای مثال

مخلوط وانادیل وانادیت سدیم به فرمول Na2OV2O411V2O5 و

متاوانادات سدیم به فرمول Na2OV2O5 در 5270°C ذوب می شوند. ذوب

این کمپلکس ها شرایط مساعدی را برای تسریع خوردگی بوجود می آورد.

در اینجا ترکیبات حاصل از احتراق نه تنها به نوع ناخالصی بلکه به

نسبت آنها نیز بستگی کامل دارد و در مورد وانادیم میزان سدیم از

اهمیت خاصی برخوردار است.

البته سدیم وانادیل وانادایت پس از تولید و ذوب شدن، با فلز

آلیاژ مربوط به تیوب، ترکیب شده و بر اثر سیال بودن از سطح آلیاژ

کنار رفته و سطوح زیرین تیوب مربوطه در معرض ترکیب جدید قرار می

گیرد. ادامه این وضع به کاهش ضخامت تیوب و در نهایت سوراخ شدن و

از کار افتادن آن منجر می شود.

مشعل ها و سوخت:

نقش کیفیت نوع سوخت و نوع مشعل ها شاید از همه عوامل یاد شده در

کارکرد مناسب، راندمان بیشتر و کاهش خوردگی بیشتر برخوردار باشد.

چنانچه از مشعل های Low excess air و یا نوع مرحله سوز (stage

burning) استفاده شود، هوای اضافی مورد نیاز به میزان قابل توجهی

کاهش یافته و به حدود 3 و 5 درصد می رسد که ضمن کاهش و به حداقل

رساندن گازهای خورنده و مضر زیست محیطی مثل NOx، Sox، در بالا

بردن راندمان کوره بسیار موثر خواهد بود. این امر باعث کاهش مصرف

سوخت شده، و در نتیجه باعث کاهش گازهای حاصل از احتراق و آسیب

رساندن به تیوب ها، بدنه کوره و دود کش ها خواهد شد. وضعیت

عملکرد مشعل ها بایستی به طور مداوم زیر نظر باشد. بد سوزی مشعل

ها می تواند دلایل متضادی، همچون نامناسب بودن سوخت، عیب

مکانیکی، کک گرفتگی سرمشعل و یا بالعکس، رفتگی و سائیدگی

(Errosion) بیش از حد سر مشعل، کمبود بخار پودر کننده و ...

داشته باشد. وجود مواد آسفالتی، افزایش مقدار کربن باقیمانده

(carbon residue) ، بالا بودنِ مقادیر فلزات مثل سدیم، نیکل،

وانادیم و هم چنین سولفور در سوخت مسائل متعددی را در سیستم

احتراق ایجاد می کند که این مسائل به طور کلی به دو دسته تقسیم

می شوند.

الف - مسائل عملیاتی قبل از مشعل ها و احتراق:

این مسایل در اثر وجود آب و نمک ها و ته نشین شدن آنها در ذخیره

سازی نفت کوره بوجود می آیند. در این رابطه عدم تخلیه مداوم مخزن

ذخیره سازی، خوردگی و مشکلات ایجاد شده به طور خلاصه عبارتست از:

تشکیل لجن (sludge) در مخزن در اثر عدم استخراج کامل نفت کوره و

آب، انباشته شدن لجن در فیلترها در اثر محصولات ناشی از خوردگی و

پلیمریزاسیون هیدروکربورهای سنگین به علت اثر کاتالیزوری محصولات

ناشی از خوردگی، انباشته شدن لجن و صمغ های آلی در گرم کننده

سوخت، گرفتگی و خوردگی در نازل های پودر کننده نفت کوره


دانلود با لینک مستقیم


تحقیق درمورد خوردگی در دیگ بخار

دانلود نقشه زمین شناسی ورقه چهل کوره همراه با گزارش زمین شناسی در مقیاس 1:100000

اختصاصی از هایدی دانلود نقشه زمین شناسی ورقه چهل کوره همراه با گزارش زمین شناسی در مقیاس 1:100000 دانلود با لینک مستقیم و پر سرعت .

دانلود نقشه زمین شناسی ورقه چهل کوره همراه با گزارش زمین شناسی در مقیاس 1:100000


دانلود نقشه زمین شناسی ورقه چهل کوره همراه با گزارش زمین شناسی در مقیاس 1:100000

دانلود نقشه زمین‌شناسی صد هزار چهل کوره به همراه گزارش کامل پشت نقشه

در اینجا  نقشه زمین‌شناسی1:100000 چهل کوره به همراه شیت گزارش کامل آن با کیفیت بسیار بالا برای دانلود قرار داده شده است.

دانلود نقشه زمین شناسی ورقه چهل کوره همراه با گزارش زمین شناسی در مقیاس 1:100000

پیش نمایش نقشه زمین شناسی چهل کوره

 

تقریباً نقشه زمین‌شناسی کلیه استان‌ها، نواحی،شهرها و ... ایران( در مقیاس‌های مختلف از 1:25000 تا 1:5000000 به همراه گزارش آنها موجود می‌باشد. فرمت این محصولات  PDF  و JPg می‌باشد در صورت نیاز به شیپ فایل (Shapefile) این نقشه ها شما می توانید از طریق ایمیل  Golipour.babak@gmail.com یا از طریق شماره تماس های  09373378060 (در تلگرام یا تماس) با ما در ارتباط باشید و سفارش دهید ، مراتب در اسرع وقت به اطلاع شما رسانده خواهد شد

 

 

 


دانلود با لینک مستقیم


دانلود نقشه زمین شناسی ورقه چهل کوره همراه با گزارش زمین شناسی در مقیاس 1:100000

گزارش کارآموزی جوشکاری کوره ای یا آهنگری و جوشکاری با شعله

اختصاصی از هایدی گزارش کارآموزی جوشکاری کوره ای یا آهنگری و جوشکاری با شعله دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 75

 

مقدمه

از ابتدای خلقت بشر مساله اتصال و به هم بستن و ضرورت دستیابی به شیوه های آسانتر برای ایجاد اتصالات مطرح بوده است . ایجاد اتصال در شکلهای پیشین خود از به هم بستن شاخه های درختان و تکه های چوب و دوختن تکه های پوست حیوانات برای مصارف گوناگون آغاز شد و متناسب با تکامل نیاز های انسان ،هنر اتصال و به هم پیوستن اجسام نیز رو به تکامل نهاد .

پیدایش فلزات و آلیاژ های فلزی وتلاش مستمر در یافتن راههای اتصال آنها به هم موجب ابداع روشهای مختلف اتصال شد که اتصال پیچ و مهره ای ، اتصالات پرچی و اتصالات جوشکاری شده از آن جمله اند .

در دنیای امروزه ، صنعت جوشکاری از نظر وسعت کار و تنوع بالاترین مرتبه را در علم اتصال و بریدن و جدا سازی قطعات فلزی و سایر مواد صنعتی دار است و طراحان و مهندسان خطوط تولید مصنوعات فلزی با بهرگیری از فرایند های مختلف و متنوع جوشکاری به بالاترین سرعت و کیفیت دست یافته اند . در عین حال ، وزن سبک مصنوعات و صرف هزینه هرچه کمتر ، از دیگر دستاوردهای آنان بوده است .

تاریخچه :

جوشکاری کوره ای یا آهنگری و جوشکاری با شعله ، نخستین روشهای شناخته شده جوشکاری به شمار می روند .

مصریها ، یونانیها و روسها برای جوشکاری و لحیمکاری فلزات قیمتی یا زود ذوب از نوعی مشعل ابتدایی استفاده می کردند که در آنها الکل یا مایع مشابه به عنوان سوخت به کار می رفته است .

از قرن نوزدهم که کار اختراعات و اکتشافات رونق گرفت ، نوآوری و خلاقیت در میدان تکنولوژی جوشکاری نیز ظهور کرد و روشهای مختلف جوشکاری یکی پس از دیگری ابداع گردید .

جوشکاری با قوس الکتریکی و استفاده از خاصیت حرارتی جریان برق در امر اتصالات فلزی ، با وجود اینکه چندین دهه قبل شناخته شده بود ، کاربردی نداشت .

سرانجام مردی روسی به نام( برنادوس) این پدیده را کشف کرد و در سال 1887 توانست جوشکاری با قوس الکتریکی و الکترود زغالی را اختراع کرد . در سال 1891 یک امریکایی به نام (کوفین) توانست به جای الکترود زغالی از الکترود فلزی استفاده کند و این روش به نام خود به ثبت برساند .

در آن زمان ، جوشکاری با الکترود لخت فلزی بسیار دشوار بود زیرا قوس بین الکترود فلزی و قطعه کار بی ثبات بود و کنترل انتقال قطره مذاب از الکترود به قطعه بسختی انجام می گرفت .

کشف الکترود روپوش دار به وسیله یک مخترع سوئدی به نام اسکار کیلیرگ در سال 1905 باعث ثبات قوس و بهبود کیفیت جوش شد .

پژوهشهای مختلف برای افزایش مرغوبیت و کیفیت این روش ادامه یافت و همچنان ادمه دارد . جوشکاری با قوس الکتریکی و الکترود روپوش دار در ردیف جوشکاریهای ذوبی است که امروزه به طور گسترده در صنایع مختلف به کار گرفته می شود . در زمان حاضر ، جوشکاری قوس دستی (SMAW) یکی از متداولترین روشهای جوشکاری است که به طور گسترده در صنایع فلزی ایران کاربرد دارد و به عنوان پدیده ای ارزشمند در امر تولید و تعمیر در کارخانه ها و کارگاههای مختلف صنعتی ایفای نقش می نماید . به دلیل وابستگی این فن به علوم و فنون و گستردگی دامنه علمی آن متخصصان و کارشناسان ورزیده همواره در حال پژوهش هستند و دستاورد های خود را به صورت استانداردهای جوشکاری انتشار می دهند .

در عملیات اجرائی نیز کاردانان با تجربه همکاری دارند و با تلاش و پشتوانه غنی علمی چرخهای عظیم و پیچیده صنعت را به طور اصولی و اقتصادی به حرکت در می آورند .


دانلود با لینک مستقیم


گزارش کارآموزی جوشکاری کوره ای یا آهنگری و جوشکاری با شعله

تحقیق درباره تولید آهن اسفنجی کوره های احیا در واحدهای میدرکس

اختصاصی از هایدی تحقیق درباره تولید آهن اسفنجی کوره های احیا در واحدهای میدرکس دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 48

 

مقدمه

از بین روشهای صنعتی احیای مستقیم کانه های آهن که از گاز طبیعی استفاده می کنند ، تولید اهن اسفنجی به روش میدرکس توسعه چشم گیری داشته است . باردهی مداوم آهن اسفنجی به صورت سرد یکی از روش میدرکس می باشد . واحدهای متعددی به این روش در دهه اخیر در کشورهای مختلف تاسیس و شروع به کار کرده اند .

ابداع روش میدرکس به وسیله D .Beggs w .t .marton و تحقیقات لازم برای توسعه آن از سال 1965 میلادی درشرکت میدلند- روس انجام گرفت . در سال 1976 میلادی یک واحد احیای مستقیم آزمایشی با تولیدی برابر 5/1 تن آهن اسفنجی در ساعت در توله دو واقع در اوهیو و سپس واحد دیگری به ظرفیت سالیانه 150هزار تن در پرتلند ، آمریکا تاسیس شد که در سال 1969 میلادی شروع به تولید کرد . متعاقباً ، واحدهای دیگری در چرجتاون آمریکا و در کارخانه فولادسازی هامبورگ، تاسیس شدند که در سال 1971 میلادی راه افتادند . واحد بعدی سیدبک رد کانادا بود که در سال 1973 میلادی راه اندازی شد . در ژانویه 1974 میلادی ، اجازه ساخت کارخانه های تولید آهن اسفنجی به روش میدرکس به گروهفولاد کورف واگذار شد.

در کشورهای پیشرفته صنعتی مانند آمریکا و آلمان فدرال، کانادا ، اتحاد جماهیر شوروی و نیز کشورهایی که دارای منابع غنی گاز طبیعی هستند ، در دهه گذشته از تولید آهن اسفنجی به روش میدرکس استقبال کرده اند .

مضافاً به اینکه ابعاد و ظرفیت تولید آهن اسفنجی کوره های احیا در واحدهای میدرکس گسترش چشمگیری یافته است و مثلاً قطر کوره احیا در مدول 200 ، 6/3 متر ، قطر کوره احیا در مدول 400 ، 88/4 متر ، ظرفیت روزانه نسل اول آن مدول 1000 و ظرفیت روزانه نسل دوم آن 1250 تنبودهاست اما قطر کوره احیا در مدول 400 به 5/5 متر و ظرفیت روزانه آن به حدود 1700 تن اهن اسفنجی افزایش یافته است . به عقیده سازندگان واحدهای میدرکس گسترش ظرفیت کوره های احیا به دلایل اقتصادی ممکن می باشد . گرچه در این زمین دلایل کافی در دست نیست ولی این امر طبیعی به نظرمی رشد .

در اغلب روشهای صنعتی تولید آهن اسفنجی به روش میدرکس ، گاز طبیعی به عنوان عامل احیا کننده و گرما زا مصرف می شود . یک واحد میدرکس از دو قسمت اصلی تشکیل می شود :

قسمت اول ، تجهیزات لازم برای تبدیل گاز طبیعی به گاز احیا کننده .

قسمت دوم ،تجهیزات لازم برای احیای کسیدهای آهن توسط گاز احیا کننده .

تولید آهن اسفنجی گاز احیا کننده به روش میدرکس مداوم است . درزیر باختصار تجهیزات واحدهای میدرکس تشریح می شود .

ذکر این نکته ضروری است که چون تجهیزات واحدهای مختلف و نیز ویژگی احیا به این روش در دهه گذشته تغییرات زیادی داشته لذا خصوصیات ارائه شده در زیر مربوط به واحدهایی است که ویژگی آنها در منابع منتشر شده و برای کلیه واحدهای میدرکس عمومیت ندارد .

تجهیزات انتقال بار به کوره احیا و تخلیه آهن اسفنجی از کوره به روش میدرکس

در سیستم میدرکس ، بار گندله یا سنگ آهن خرد شده پیش از ورود به سیلوهای روزانه سرند می شوند. دانه بندی بار برای کوره از این قرار است :

بار درشتر از 50 میلیمتر

بار بیشتر از 6تا50 میلیمتر

بار بین 3 تا 6 نیلیمتر

و بار زیر 3 میلیمتر

بار با دانه بندی 6 تا 50 میلیمتر و 3 تا 6 میلیمتر به نسبت معینی در کوره احیا تغذیه می شود . برای دانه بندی گندله و یا سنگ آهن خرده شده و به روش میدرکس تجهیزاتی پیش بینی شده است . همچنین آهن اسفنجی تولید شده در کوره احیا پیش از ورود به سیلوها و مصرف مستقیم سرند می شوند و نرمه آن در برخی از واحدها به خشته تبدیل شده و در برخی مستقیماً در کوره های قوس الکتریکی به مصرف می رسد . طرح برخی از تجهیزات انتقال گندله و سنگ آهن خرد شده به کوره و نیز آهن اسفنجی به صورت گندله و یا کلوخه در می آید .

در یک میدرکس بار به وسیله نوار نقاله از سیلوهای روزانه به مخزن تغذیه قیف مانندی که در بالای کوره قرار گفته ،تخلیه میگردد . این مخزن در واحدهای میدرکس مستقر در مجتمع فولاد اهواز 75 متر مکعب گنجایش دارد . هنگامی که نوار نقاله کار نمی کند ، گندله این مخزن به عنوان ذخیره مورد استفاده قرار می گیرند .ضمناً گندله می تواند توسط یک اسکیپ بالا برنده (به جای نوار نقاله ) در این مخزن تخلیه گردد .

سطح مواد در مخزن بالای کوره از طریق میله ای رادیو اکتیو تعیین می گردد. این میله از طرفی با سطح بار و از طرف دیگر با سیستم کنترل در تماس می باشد و سطح بار به طور اتوماتیک اندازه گیری می گردد . در صورتی که گندله در این مخزن در چهار سطح زیر باشد .


دانلود با لینک مستقیم


تحقیق درباره تولید آهن اسفنجی کوره های احیا در واحدهای میدرکس

ممیزی انرژی در کوره ها (کامل)

اختصاصی از هایدی ممیزی انرژی در کوره ها (کامل) دانلود با لینک مستقیم و پر سرعت .

ممیزی انرژی در کوره ها (کامل)


ممیزی انرژی در کوره ها (کامل)

این فایل پاورپوینت شامل آموزش تهیه چک لیست برای ممیزی انرژی کوره ها می باشد که از 13 اسلاید تشکیل یافته.


دانلود با لینک مستقیم


ممیزی انرژی در کوره ها (کامل)