هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

مقاله فلزات آمورف

اختصاصی از هایدی مقاله فلزات آمورف دانلود با لینک مستقیم و پر سرعت .

مقاله فلزات آمورف


مقاله فلزات آمورف

این محصول در قالب ورد و قابل ویرایش در 68 صفحه می باشد.

فهرست مطالب

فصل اول : فلزات آمورف و آمورف کامپوزیتی ۱
۱-۱ مقدمه ۲
۲-۱ فلزات آمورف ۶
۱-۲-۱ خواص آلیاژهای آمورف ۹
۲-۲-۱عمده نقطه ضعف مکانیکی مواد آمورف ۱۲
۳-۱ مکانیزم های تغییر شکل در فلزات آمورف ۱۲
۱-۳-۱ تشکیل حجم آزاد ۱۳
۲-۳-۱ افزایش دمای موضعی ۱۸
فصل دوم : شکست در فلزات آمورف ۲۳
۱-۲ شباهت های شکست فلزات آمورف با فلزات کریستالی ۲۴
۱-۱-۲ اثر فشار هیدرواستاتیک روی جریان تنش ۲۴
فصل سوم : کامپوزیت کردن جهت بالا بردن پلاستیسیته ۲۵
۱-۳ راهکارهایی برای افزایش پلاستیسیته در آلیاژهای یکپارچه ۲۶
۲-۳ فلزات آمورف کامپوزیتی ۲۷
۱-۲-۳ مکانیزم تغییرات و افزایش پلاستیسیته توسط ذرات کامپوزیت ۲۸
۳-۳ بهبود پلاستیسیته با استفاده از ذرات تقویت کننده فاز دوم ۳۱
۴-۳ بررسی باندهای برشی توسط TEM در یک کامپوزیت BMGs 35
1-4-3 انتشار باندهای برشی در کل قطعه ۳۹
۵-۳ انواع مختلف فلزات آمورف کامپوزیتی ۴۱
۱-۵-۳ کامپوزیتهای ذره ای ۴۲
۲-۵-۳ کامپیوزیتهای In-situ 42
6-3 ذرات خارجی تقویت کننده در فلزات شیشه ای توده ۴۲
۱-۶-۳ کامپوزیت حاوی ذرات خارجی تقویت کننده ، تولید به روش تقویتBMG 43
2-6-3 تولید کامپوزیت BMG حاوی ذرات خارجی تقویت کننده با استفاده از فرایند ذوب ۴۴
۷-۳ فرم In situ کامپوزیت های BMG 45
1-7-3 فرم کاربید In situ در فلزات شیشه ای پایه Zr 46
8-3 تشکیل و ساختارها ۴۷
۹-۳ مکانیزم تشکیل فاز آمورف نانو ساختار شده ۵۰
۱۰-۳ خواص مکانیکی و رفتار تغییر شکلی آلیاژ های آمورف نانوساختار شده توده ۵۱
۱۱-۳ تشکیل و خواص مکانیکی آلیاژ های آمورف خوشه دار توده ۵۴
۱۲-۳ مقایسه کامپوزیت های ذره ای و In situ 56
فصل چهارم :عوامل موثر در ایجاد داکتیلیته بیشتر در مواد آمورف ۶۰
۱-۴ کریستالیزاسیون ۶۱
۱-۱-۴ اثر بیش از حد کریستالیزاسیون ۶۱
۲-۴ آنیلینگ ۶۲
منابع و مآخذ ۶۴

1-1  مقدمه

طبق آزمایشات مستقل از دما و فشار متغیر، از نظر ترمودینامیکی، مواد سه حالت اصلی : مایع، جامد، گاز دارند.

تعیین کنندة هر یک از این حالات درجة آزادی بین اتمها و قید و بند آنها به یکدیگر است و یک مرحله تحول بین هر حالت وجود دارد. تعریف شیشه : یک مایع شیشه ای یا جامد بدون کریستال است که مشخصه های ویسکوزیته و ساختار آن نشان دهندة هم جامد و هم مایع است. به عبارت دیگر شیشه یک جامد در دمای اتاق است زیرا ویسکوزیته آن بیش از حد توازن یعنی ۶/۱۴ ۱۰۰ است و از طرف دیگر هنوز یک مایع است زیرا ساختار اتمها و مولکولهای آن یک ساختار بی نظم و شبیه مایع است . جامد از فاز کریستالی به وجود آمده است و یک کریستال از یک نظم دوره‌ای بین اتمها پیروی می کند اما مایع دارای چنین نظمی نیست و یک نظم تصادفی بین اتمها بدون تناوب و دوره خاصی را دارد.

بنابراین می گوییم، شیشه جامد و آمورفی است که اتمهای ساختار آن مانند مایع است. مهمترین مشخصه یک شیشه علاوه بر ساختار آن، پدیده تحول و به وجود آمدن آن است.

تحول و به وجود آمدن شیشه در یک Tg [1]ایجاد می‌شود،‌مذاب تا زیر دمای انجماد سرد می‌شود و تا زمانیکه دما کاهش می یابد ویسکوزیته نیز به صورت پیوسته زیاد می‌شود (شکل ۱-۱).


 


[۱] – دمای شیشه ای شدن

 

۱-۲-۱ خواص آلیاژهای آمورف

– مقاومت به خوردگی

با انتخاب صحیح عناصر آلیاژی در آلیاژهای آمورف پایه Fe می توان مقاومت به خوردگی های بسیار بالا دست پیدا کرد. به عنوان مثال کاهش جرم ناشی از خوردگی یک میله آلیاژی آمورف پایه آهنFe-Cr-Mo-C-B با قطر۳mm در محلول۶N HCL در درجه حرارت ۲۸۹ درجه کلوین حدود۱۰۴ برابر کوچکتر از فولادهای ضد زنگ ۳۰۴۴ و فولادهای کرم دار است مقاومت به خوردگی بالا (مشابه حالت قبل) برای دیگر سیستم های آلیاژی آمورف (BGM) مانند Co-Ta-B,Fe-Nb-B نیز گزارش شده است.

– خواص مغناطیسی

همه آلیاژهای آمورف(BGM) پایه Fe-b-Si-(Nb,Zr) ،   Fe-Ga-(P,C,B), Fe- (Zr,Hf,Nb)  خواص مغناطیسی نرم بسیار عالی در درجه حرارت اتاق از خود نشان می دهند شکل ( ۱-۵) ارتباط بین Coercive force (Hc),saturation magnetostrication را برای آلیاژهای آمورف (BMG) پایه آهن و کبالت را نسبت به آلیاژهای آمورف معمول و آلیاژهای نانوکریستال نشان می‌دهد. آلیاژهای آمورف (BMG) پایه آهن بسیار بزرگتری (در حدود۵-۱۰*۳)وHc کوچکتری نسبت به دیگر مواد دارند.

 

 

 

 

 

شکل ۱-۵ : ارتباط بین  و Hc

– قابلیت جوش پذیری

با استفاده از پدیده پایدار کردن مایع فوق تبرید شده (SL) ورقه های آلیاژ آمورفAl-Ni-Cu-Zr با ضخامت۲٫۵mm می تواند بدون شکل گیری هیچ گونه فاز کریستالی به کمک جوشکاری الکترون بیم electronbeam welding (EB) به یکدیگر متصل می‌شود.

تحت شرایط مناسب جوشکاری می توان یک ساختار کاملاً آمورف بدون شکل گیری هیچگونه فاز کریستالی در زمینه فلزی، منطقه دوباره ذوب شده و منطقه تحت تأثیر حرارت قرار گرفته را داشته باشیم همچنین استحکام کششی شکست نمونه های جوشکاری شده حدود۱۴۰۰Mpa گزارش شده است که در حدود۹۰%-۸۵ استحکام ورق جوشکاری شده می باشد.

– مقاومت به سایش

در حال حاضر موتورهای دنده ای بسیار کوچک (Micro-gear motor) با قطر ۱٫۵mm به کمک آلیاژ آمورف پایهNi ساخته شده است موتورهای دنده ای با قطر ۱٫۵mm به کمک هیچ تکنیک ماشین کاری مکانیکی نمی تواند ساخته شود موتورهای دنده ای با قطر۲٫۴mm به سختی به وسیله ماشین کاری مکانیکی فولادی SK-4 ساخته شده که دوام دنده های آلیاژ آمورف پایه Ni،۳۱۳ برابر دنده های فولادی (SK-4) می باشد که طبق شکل  ( ۱-۱۲)‌ چرخ دنده‌ای از جنس آلیاژ پایه Ni حتی بعد از ۱۸۷۵ میلیون دور شکل ظاهری خود را حفظ کرده است در حالی که چرخ دنده فولادی SK-4 به مقدار زیادی ساییده شده است.

 

 

 

 

 

 

 

 

شکل  ۱-۶ : مقایسه جنس چرخ دنده ها در خصوص مقاومت به سایش

 

۲-۲-۱ عمده نقطه ضعف مکانیکی مواد آمورف

مکانیزم کار سختی در فلزات آمورف که تحت تنش به طور الاستیکی به تنش تسلیم می رسند دیده نمی شود و پس از تسلیم کرنش در یک تنش ثابت ادامه پیدا می‌کند. در تنش بالا و دمای اتاق کرنش غیر یکنواخت است و داخل باندهای نازک برشی متمرکز می‌شود که سبب ایجاد جریان پلاستیک دندانه دندانه می شود شکل (۲-۶). عمده نقطه ضعف مکانیکی فلزات آمورف داکتیلیته آنها است که محدود است فلزات آمورف یکپارچه فقط در حدود ۱% کرنش پلاستیک در فشار تحمل می کنند که کمتر از فولادهای مخصوص و آلیاژهای Ti است در کشش به طور کلی فلزات آمورف بعد از گسترش یک باند برشی می شکنند و هیچ گونه تغییر شکل پلاستیک از خود نشان نمی دهند. اما تحت شرایط بارگذاری خاص مثل پروسة نورد می توان با ایجاد چندین باند برش، کرنش بیشتری ایجاد کرد و از شکسته شدن نمونه جلوگیری نمود[۶].

۳-۱ مکانیزم های تغییر شکل در فلزات آمورف

اگرچه رفتار مکانیکی ماکروسکوپی فلزات آمورف به طور گسترده و وسیع مطالعه شدند ولی ماهیت واقعی مکانیزم تغییر شکل در مواد آمورف آشکار نیست که در این خصوص دو نظریه بیان شده است[۷].

۱- تشکیل حجم آزاد

تغییر شکل در فلزات آمورف به تغییر موضعی ویسکوزیته در باندهای برشی در صفحاتی که ماکزیمم نیروی برشی به آنها وارد می شود وابسته است که در طول تغییر شکل به دلیل تشکل حجم آزاد که باعث کاهش دانسیته فلزات آمورف می شود ویسکوزیته در داخل باندهای برشی کم شده و در نتیجه مقاومت به تغییر شکل کاهش می یابد.

۲- افزایش دمای موضعی

افزایش دمای موضعی و رسیدن دمای موضعی به بالای دمای شیشه ای شدن یا حتی دمای ذوب  باعث کاهش ویسکوزیته در این نواحی به مقدار بسیار زیادی می شود.

در هر دو مورد، تغییر در ویسکوزیته، تغییر شکل را متمرکز کرده و باعث ایجاد جریان غیریکنواخت می شود.

۱-۳-۱ تشکیل حجم آزاد

هنگامی که مذاب منجمد شده و به شکل شیشه درآمده ، به دمای تغییر از یک حالت به حالت دیگری می رسد حجم محاصره شده اطراف هر اتم کاهش می یابد. حجم آزاد به حجم اضافی اطراف یک اتم نسبت به حجم اطراف یک اتم در یک کریستال کامل اطلاق می شود. حجم آزاد اولیه در شیشه در دمای شیشه ای شدن و زمانی که مذاب انجماد پیدا کرده و موقعیت پیکربندی اتم ها ثابت می شود بیان می گردد.

 برطبق نظریهTurnbull, Spaepen موقعیت شروع برش احتمالاً در مکان هایی است که انبساط ناشی از عیوب ساختاری یا توزیع آماری حجم آزاد باعث کاهش ویسکوزیته و در نتیجه تمرکز کرنش می شود و در ادامه کرنش ، حجم آزاد ایجاد می شود و با افزایش حجم آزاد ویسکوزیته کاهش می یابدSpaepen   پروسة تغییر شکل در فلزات آمورف را رقابت بین عوامل ایجاد کننده تنش و نفوذ از بین برنده حجم آزاد توصیف کرد. کرنش به وسیله مجموعه پرش های اتمی ایجاد می‌شود که اتم ها به وسیله پرش به داخل فضای مجاور با حجم مخصوصV حرکت می کند. موقعیت اتم ها قبل از پرش به توانایی انرژی آنها بستگی دارد برای اتفاق افتادن پرش اتم ها انرژی فعال سازی باید فراهم شود در غیاب نیروهای خارجی تعداد پرش به جلو و عقب که ناشی از نوسان گرمایی است هم اندازه و مساوی می باشد. هنگامی که تنش برشی  به نمونه وارد می شود سد انرژی در جهت اعمال تنش کاهش می یابد و در نتیجه عدد پرش به جلو از عدد پرش به عقب بیشتر می شود که این امر باعث کرنش در مقیاس میکروسکوپی می گردد. زمانی که یک اتم با حجم مخصوصV* در یک مکان خالی مجاور با حجم مخصوص کوچکتر V با اعمال نیروی خارجی جا می گیرد حجم آزاد به وجود می آید. در تنش پایین و دمای بالا پرش نفوذی اتم ها برای کاهش تغییر ساختار ناشی از حجم آزاد ایجاد شده در اثر اعمال تنش برشی کافی است و در نتیجه می تواند تغییر شکل یکنواخت اتفاق بیافتد، ولی در تنش بالا و دمای پایین نفوذ نمی تواند حجم آزاد ایجاد شده ناشی از تنش را جبران کند پس حجم آزاد در باندهای برشی انباشته می‌شود و کرنش غیریکنواخت رخ می دهد.

Spaepen این فرایند را به صورت شماتیک در شکل (۱-۷) نشان داده است همچنین معادله عمومی Spaepen، قسمت ویسکوزیته نرخ کرنش را که ناشی از پروسه جریان حجم آزاد می باشد را توضیح می دهد[۷].


دانلود با لینک مستقیم


مقاله فلزات آمورف

مقاله اثر ناخالصی ها بر روی مس

اختصاصی از هایدی مقاله اثر ناخالصی ها بر روی مس دانلود با لینک مستقیم و پر سرعت .

مقاله اثر ناخالصی ها بر روی مس


مقاله اثر ناخالصی ها بر روی مس

این محصول در قالب ورد و قابل ویرایش در 42 صفحه می باشد.

نوارهای مسی در عملیاتهای شکل دهی مورد استفاده قرار می گیرند . تمپر ( درجه نوردکاری سرد ) تاثیر کمی بر روی حد فنجانی شدن ( حد عمیق کششی ) دارد ولی اثرات جدی بروی شکل دادن کشیدنی دارد ( به فرو رفتگی های ایجاد شده در آزمایش اریکسن ، گلویی شدن در شکل دادن کشیدنی مراجعه کنید ) و دیگر موارد .

در جدولهای (6-1) ترکیب بعضی از آلیاژهای تجاری مس داده شده است .

Effect of other elements in copper ::7-4

عناصر مورد بحث ، ناخالصیها ، اکسیژن زداهای باقیمانده یا عناصری که عملاً بدلیل خاصی برای بالا بردن بعضی خواص به مس اضافه شده اند در مس می یاشند.

ارسنیک ، آنتیموان ، سیموت ، آهن ، سرب ، کادیم ، کبالت ، نیکل ، نقره ، سولفور ، سلنیم ، تلور عنوان ناخالصی طبقه بندی می شوند . با وجود اکسیژن بطور عمدی کنترل می شود اما این عنصر ممکن است بعنوان ناخالصی طبقه بندی شود اما شاید صحیح تر این باشد که به عنوان آلیاژ ساز طبقه بندی شود .

بعضی از عناصر که در موارد خاصی به عنوان ناخالصی حضور می یابند در موقعیتهای دیگر به عنوان عناصر الیاژسازی ظاهر می شوند مانند نقره ، سرب ، تلور .

عناصر فسفر ، لیتیم ، بور ، کلسیم می توانند بعنوان اکسیژن زدا مورد استفاده قرار گیرند اما هیچکدام در حد تجاری و قابل توجهی مورد استفاده واقع نمی شود .

ارسنیک ، برلیم ، کادیم ،کبالت ، کرم ، سرب ، نیکل ، فسفر ، سیلیسم ، نقره ، تلور ، قلع ، روی ، و زیرکونیم به طورعمدی به مس اضافه می شوند .

حضور این عناصر در جدول 7 نشان داده شده است .

ARSENIC::1-7-4

ارسنیک بطور طبیعی در بعضی سنگهای معدنی مس ظاهر می شود و ممکن است اجازه داده شود که بعد از عمل تصفیه در مس باقی بماند یا بطور عمدی در غلظتی به میزان 3/0 % به مس اضافه شود .

بعضی وقتها این عنصر به اندازه 5/0% به مس اضافه شده است که تحت عنوان مس ارسنیکی به فروش می رسد و در لوله های مبدلهای حرارتی و لوله های کندانسرها مورد استفاده واقع می شود ( تکنولوژی مبدلهای حرارتی را ببینید ).

ارسنیک استحکام خمشی را تحت شرایط کارسرد کمی افزایش مس دهد و دمای تبلور را بالا می برد . نقره که به مس ارسنیکی افزوده می شود به بالا رفتن دما تبلور مجدد کمک می کند .

آرسنیک اثر زیان آور قابل بر روی هدایت الکتریکی مس حتی در حضور اکسیژن دارد (به شکل 6 نگاه کنید)

حضور اکسیژن مشخصه های ریخته گری مس ارسنیکی را بهبود می بخشد . از طرفی ارسنیک موجب بهبود خصوصیات کاری مس اکسیژن دار می شود .

اثرمفید ارسنیک بروی خواص کارسرد مس اکسیژندار بدلیل تاثیر ارسنیک بروی ساختمان آلیاژ تلقی می شود .

اکسیدمس بطور طبیعی به شکل یک یوتکتیک که کریستالها یادانه های نرم را احاطه می کند . هنگامیکه غلظت ارسنیک از مقدار ( 1/0 )% افزایش می یابد یوتکتیک بوسیله ذرات کروی نسبتا بزرگی و منفردی جانشین می شود و دانه های جداگانه واقع می شوند . اجزاء تشکیل شده جدید احتمالا محصول واکنش انجام شده بین ارسنیک و اکسید مس هستند که ممکن است این مواد ارسنات مس یاشند . این ترکیب فعال نوری است و شکلهای تداخلی خاصی هنگامیکه تحت نورپلاریزه به آن نگاه می کنیم تشکیل می دهد. مشابه آن برای سیستمهای مس- اکسیژن-آنتیموان خاصیت فعالیت نوری گزارش شده است .

 ANTIMONY:2-7-4

معمولا آنتیموان فقط در غلظتهای خیلی کم در مس یافت می شود . آنتیموان با مس بدون اکسیژن تشکیل محلول جامد می دهد بنابراین بر هدایت الکتریکی مؤثر است اما با وجود این کمتر از ارسنیک مورد توجه واقع می شود . آنتیموان همچنین در حضور CUO تشکیل کره هایی می دهد که ترکیب حاصل شده فعالیت نوری نیز دارد .

مسی که شامل تا حدود (5/0)% آنتیموان در حضور (03/0 – 02/0 )% اکسیژن است بطور موفقیت آمیزی نورد گرم می شود .

مسی که شامل (5/0 – 05/0)% از هر یک ا ز عناصر آنتیموان و ارسنیک در حضور (02/0 )% اکسیژن است می تواند کار گرم شود .

آنتیموان استحکام کنشی و ویژگیهای خستگی مس را در مقایسه با مس ارسنیکی افزایش می دهد و موجب افزایش حد دوام ( حد خستگی) می شود .

آنتیموان حتی در مس اکسیژن دار دمای تبلور مجدد را افزایش می دهد .

   BISMUTH ::3-7-4

بیسموت غالبا در مس نامحلول است . (02/0) % بیسموت در دمای C 0 980 در مس حل می شود .

بیسموت به شکل یک لایه بین دانه ای در مس بدون اکسیژن ظاهر می شود و چون دمای ذوب پایینی دارد (C 0  271 ) تمایل به سرخ شکنندگی است با توجه به اینکه قسمت عظیمی از نوارهای ورق (تسمه ها ) مسی توسط نورد گرم تولید می شوند ، حتی مقدار خیلی کمی بیسموت در مس قابل تعمل نمی باشد حضور فسفر باعث می شود که سرخ شکنندگی ایجاد شود اثر وجود آنتیموان مجددا تکرار شود .

Rees , Conda (26) با انجام عمل آنیلی در دمای c 0 900 دریافتند که تنها اثر بیسموت روی دمای سیم سختی مس ، ( c 0 5/2)  به ازای هر ppm بیسموت در دامنه pmm (3-6/1) است بیسموت مانند آرسنیک و  با اکسید مس واکنش می دهد که نتیجه اش یک تجمع تدریجی از ساختار یوتکتیکی مس – اکسید مس است به همراه افزایش یافتن غلظت بیسموت تا اینکه ذرات کروی از ماده متشکله جدید بوجود آیند .

با وجود غلظت نسبتاً بالا اکسیژن در مس بیسموت دار ، لایه بیسموت  در زیر میکروسکوپ ریز نشده است . حضور اکسیژن در مس بیسموت دار بهبود خواص مکانیکی نورد کاری گرم را توجیه می کند .

بیسموت همچنین با تمایل به ساختن مدار شکننده خواص نورد کاری سرد را تحت تاثیر قرار می دهد . حضور سرب علاوه بر بیسموت در آلیاژ سازی اثرات زیان آور بیسموت را کاهش می دهد به این وسیله تمایل بیسموت را به ساختن لایه های مرزدانه ای معدوم می سازد .

آرسنیک و آنتیموان در حضور اکسیژن سعی می کند سرخ کنندگی مس بیسموت دار را کاهش دهند که نتیجه آن توزیع مجدد بیسموت در ساختار میکروسکوپی مس است .

اکسیدهای کمپلکس بیسموت و آنتمیوان که ممکن است تشکیل شوند از جدایش بیسموت در مرزدانه ها جلوگیری می کنند .

    SULFUR , SELENIUM , TELURIUM::4-7-4


دانلود با لینک مستقیم


مقاله اثر ناخالصی ها بر روی مس