هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

Solar Power for Your Home-McGraw Hill

اختصاصی از هایدی Solar Power for Your Home-McGraw Hill دانلود با لینک مستقیم و پر سرعت .

Solar Power for Your Home-McGraw Hill


Solar Power for Your Home-McGraw Hill

267 صفحه pdf شامل 12 فصل

Solar Power for Your Home

McGraw Hill

2010

David S. Findley

 

جزییات سرفصلهای مطالب این کتاب

 The History of Solar Energy
Sunlight and Life on Earth
The Human Factor
The Future
Food Production and Declining Natural Resources
Desertification
Solar for Humanity
The Benefits and Detriments of Solar Energy
The Solar Power Convergence
Types of Solar Power
Other Forms of Energy
Wind Power
Geothermal Energy
Tidal Energy
Ultimate Benefits of Solar Energy
Challenges of Solar Energy
 Types of Solar Energy
Energy and Oil
Passive Solar
Concentrated Solar Power
CSP with Parabolic Mirrors
Stirling Engine
Solar Water Heaters
Updraft Solar
Concentrating PV Solar
Types and Benefits of PV Solar
Thin-Film Solar
Focused-Lens and Specialty PV
Solar Costs
 Energy-Efficient Home Systems
Remove and Replace Appliances
Washing Machines
Clothes Dryers
Small Appliances
Hot Water Heaters
Solar Water Heater
Tankless Water Heater
Heat Pump
Gas Condensing Hot Water Heater
High-Efficiency Gas Storage Water Heater
Cooling Systems
Room Air Conditioners
Central Air Conditioning
Heating Systems
Geothermal Energy vs. Ground Geothermal
Maintaining Home Heating and Cooling Systems
What to Look For in a New Heating System
Other Large Energy Consumers
 Zero-Cost Passive Solar
Passive Solar Homes
The Big and Small Pictures
Building a Passive Solar Home
Passive Solar Home Modifications
Good Solar Design
Types of Solar Gain
Simple Improvements for Solar Gain
Landscaping
Fun with Passive Solar
Solar Oven
Solar Clothes Dryer
Solar Water Purification
Passive Solar Cooling
Gardening
 Creating a Personal Energy Plan
Creating a Home Energy Plan
Evaluating Your Home Energy Use
How to Use the Plan
What to Include in a Complete Energy Plan
Making the Most of Your Plan by Changing Old Habits
 The Fundamentals of a PV System
PV System Components
How PV Cells Work
Solar Cells and Panels
Single, or Monocrystalline, Silicon Panels
Polycrystalline, or Multicrystalline, Silicon Panels
Amorphous Silicon or Thin-Film Panels
Group III and V Technologies
Building-Integrated Photovoltaic
Concentrated Solar Power
High-Efficiency Multijunction Devices
Solar Panel Efficiency
The Inverter
Electrical Meters
Solar Tracking System
PV Energy Production and Savings
How Much Does a Typical PV System Cost?
Rebate and Deduction Caveats
Warranties and Replacement Costs
Payback Time
 Solar Projects You Can Use Today
Solar-Powered Swimming Pool
Solar Lighting
Solar Pet Home
Flexible Solar-Powered Gear
Solar Oven
Electric Lawnmower
Solar Carport
 The Real Costs of Energy Consumption
Global Warming
CO2, You, and the World
Reduce Your Carbon Footprint
 How and When to Hire a Contractor
Planning Your Solar Renovation
Hire an Architect
Know Your Budget
Choose the Right Contractor
Interviewing Contractors
Things to Notice During the Interview
Licensing
Getting Estimates
Building Contracts
Payments
Permits
What to Do If Things Go Bad
Funding Your Solar Project
Savings
And Loans
Bank Loans
Contractor Loans
Credit Cards
FHA and HUD Loans
State-Funded Loans
Home Equity Loans
Mortgage Refinancing
Rebates, Tax Incentives, and Tax Credits
Tax Rebates
Tax Credits
Grants
Selling Power Back to the Grid
The Future of Solar Energy
Thin-Film Solar
Micro Solar
Nano Solar
Light-Spectrum Technologies
Hybrid Technologies
Electrical Grid
Hydrogen Fuel Cells
Battery Backup
Storage Systems
The Promise of the Future
Appendix: Standards, Conversions, and Green References
Index


دانلود با لینک مستقیم


Solar Power for Your Home-McGraw Hill

تحقیق درمورد مدل Energy – Efficient مبنی برتراکم داده‌ها برای شبکه‌های سنسور بی‌سیم

اختصاصی از هایدی تحقیق درمورد مدل Energy – Efficient مبنی برتراکم داده‌ها برای شبکه‌های سنسور بی‌سیم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 46

 

موضوع:

مدل energy- efficient مبنی بر تراکم داده‌ها برای شبکه های سنسور بی سیم

چکیده:

تراکم داده ها در شبکه های سنسور بی سیم افزونگی را حذف می کند تا مصرف پهنای باند و بازده انرژی گوه ها را توسعه دهد. این مقاله یک پروتکل تراکم داده های energy- efficient امن را که (Energy- Efficient Secure Pattern based Data Aggregation) ESPDA الگوی امن energy- efficient بر پایة تراکم داده ها) نامیده می شود ارائه می کند. برخلاف تکنیکهای تراکم داده های قراردادی، ESPDA از انتقال داده های اضافی از گره های سنسور به cluster- headها جلوگیری می کند. اگر گره های سنسور همان داده ها را تشخیص داده و دریافت کنند، ESPDA ابتدا تقریباً یکی از آنها را در وضعیت خواب (sleep mode) قرار می دهد و کدهای نمونه را برای نمایش مشخصات داده های دریافت و حس شده توسط گره های سنسور تولید می کند. Cluster- head ها تراکم داده ها را مبنی بر کدهای نمونه اجرا می کند و فقط داده های متمایز که به شکل متن رمز شده هستند از گره های سنسور به ایستگاه و مکان اصلی از طریق Cluster- headها انتقال یافته است. بعلت استفاده از کدهای نمونه، Cluster- headها نیازی به شناختن داده های سنسور برای اجرای تراکم داده‌ها ندارند. زیرا به گره های سنسور اجازه می دهد تا لینک های ارتباطی سرهم پیوسته (end-to-end) امن را برقرار کنند. بنابراین، نیازی برای مخفی سازی/ آشکار سازی توزیع کلید مابین Cluster- head ها و گره های سنسور نیست. بعلاوه، بکار بردن تکنیک NOVSF block- Hopping، امنیت را بصورت تصادفی با عوض کردن با نگاشت بلوک های داده ها به time slotهای NOVSF اصلاح کرده و آن را بهبود می بخشد. ارزیابی کارایی نشان می دهد که ESPDA روش های تراکم داده های قراردادی را به بیش از 50% در راندمان پهنای باند outperform می کند.

1- مقدمه: شبکه های سنسور بی سیم، بعنوان یک ناحیه و منطقة جدید مهم در تکنولوژی بی سیم پدیدار شده اند. در آیندة نزدیک، شبکه های سنسور بی سیم منتظر هزاران گره ارزان و کم هزینه و داشتن هر توانایی (Sensing capability) sensing با توان ارتباطی و محاسباتی محدود شده بوده اند. چنین شبکه های سنسوری منتظر بوده اند تا در بسیاری از موارد در محیط های عریض گوناگونی برای کاربردهای تجاری، شخصی و نظامی از قبیل نظارت، بررسی وسیلة نقلیه و گردآوری داده های صوتی گسترش یافته باشند. محدودیتهای کلید شبکه های سنسور بی سیم، ذخیره سازی، توان و پردازش هستند. این محدودیتها و معماری ویژه گره های سنسور مستلزم انرژی موثر و پروتکلهای ارتباطی امن هستند. امکان و اجرای این شبکه های سنسور کم هزینه با پیشرفت هایی در MEMS (سیستم های میکرومکانیکی micro electromechanical system)، ترکیب شده با توان کم، پردازنده های سیگنال دیجیتالی کم هزینه (DSPها) و مدارهای فرکانس رادیویی (RF) تسریع شده اند.

چالش های کلید در شبکه های سنسور، برای بیشینه کردن عمر گره های سنسور به علت این امر است که برای جایگزین کردن و تعویض باطری های هزاران گره سنسور امکان پذیر نیست. بنابراین عملیات محاسباتی گره ها و پروتکلهای ارتباطی باید به اندازة انرژی موثر در صورت امکان ساخته شده باشد. در میان این پروتکلها،


دانلود با لینک مستقیم


تحقیق درمورد مدل Energy – Efficient مبنی برتراکم داده‌ها برای شبکه‌های سنسور بی‌سیم

تحقیق درباره برق هسته ای

اختصاصی از هایدی تحقیق درباره برق هسته ای دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره برق هسته ای


تحقیق درباره برق هسته ای

 

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:31

 

فهرست مطالب:

 

راکتورهای با نوترون سریع ، راکتوره ای زاینده

مقدمه

 

یک راکتور هسته‌ای گرمایی تولید می‌کند که منشأ آن در شکافت دو هسته قابل شکافت 235U یا 239Pu قرار دارد. تنها ماده موجود قابل کشافت در طبیعت ، 235U است که 1.140 اورانیوم طبیعی را تشیل می‌دهد و بقیه اساسا 238U غیر شکافتی است. هر شکافت اتم اورانیوم در اثر یک نوترون ، 2 تا 3 نوترون با انرژی بالا (بطور متوسط 2Mev) یعنی نوترونهای سریع (20000Km/s) را تولید می‌کند.


این نوترونها به نوبه خود می‌توانند با سایر هسته‌های اورانیوم شکافت انجام دهند که نوترونهای گسیل شده شکافتهای دیگری را تولید می‌کنند و به این ترتیب واکنش زنجیره‌ای ایجاد می‌شود. اگر قطعه ماده قابل شکافت به حد کافی بزرگ باشد، تولید نوترونها تقویت شده و سبب انفجار می‌شود: این اساس بمب اتمی است. در یک راکتور هسته‌ای یک عده پدیده‌های دیگر را برای انجام واکنش مورد نظر قرار می‌دهند: تعدادی از نوترونها در اورانیوم بویژه در 238U بدون تولید شکافت ، تعدادی دیگر توسط مواد ساختاری جذب می‌شوند و بالاخره عده دیگری به بیرون مغز راکتور فرار می‌کنند و ناپدید می‌شوند.

شرایط ایجاد شکافت زنجیری

یک راکتور فقط با یک حجم معین که کمترین ماده قابل شکافت را داشته باشد، می‌تواند کار کند: کمترین مقدار ماده قابل شکافت را جرم بحرانی می‌نامند. در یک قطعه اورانیوم طبیعی ، هر چه قدر بزرگ هم باشد، واکنش زنجیره‌ای غیر ممکن است: مقدار ماده قابل شکافت (235U) بسیار کم است و اکثریت نوترونهای جذب شده با 238U تلف می‌شوند. بنابراین باید بطور مصنوعی شکافتها را در مقابل جذبهای بدون شکافت در شرایط مساعدی قرار داد. دو راه امکان پذیر است:

یا بطور قابل ملاحظه‌ای مقدار ماده قابل شکافت را افزایش می‌دهند (اورانیوم را با 235U غنی کرد یا به آن 239Pu افزود)، یا انرژی نوترونها را توسط کند کننده کاهش می‌دهند و آن نقش 235U را (مقطع شکافت 235U) در مقابل 2358U (مقطع جذب 238U) تقویت می‌کند. به این ترتیب دو دسته راکتور شکل می‌گیرند.

 

 

 

انواع راکتور شکافتی

از یک طرف راکتورهایی که بطور مستقیم نوترونهایی با انرژی زیاد ناشی از شکافت را مورد استفاده قرار می‌دهد و این راکتورها به راکتورهای با نوترونهای سریع معروفند که ماده قابل احتراق آنها شامل یک نسبت زیادی از ماده شکافتی (در راکتورهای بزرگ 15%) است، از طرف دیگر راکتورهایی که کند کننده‌ها را مورد استفاده قرار می‌دهند (راکتورهای با نوترونهای حرارتی) و ماده قابل احتراق آن می‌تواند اورانیوم طبیعی باشد.
لازم به یادآوری است که در راکتورهای با نوترونهای حرارتی نمی‌توان اورانیوم طبیعی را مورد استفاده قرار داد، مگر آنکه مواد ساختاری و سیال خنک کننده که گرمای تولیدی را برای راه اندازی توربین آلترناتور انتقال می‌دهد، جذبهای اتلافی بسیار زیادی را سبب نشوند. در بسیاری از راکتورهای حرارتی
نوع


دانلود با لینک مستقیم


تحقیق درباره برق هسته ای

ENERGY MODELING and COMPUTATIONS in THE BUILDING ENVELOPE, 2016

اختصاصی از هایدی ENERGY MODELING and COMPUTATIONS in THE BUILDING ENVELOPE, 2016 دانلود با لینک مستقیم و پر سرعت .

ENERGY MODELING
and COMPUTATIONS
in THE BUILDING
ENVELOPE

2016

مطالب

1. Introduction: The Buildings’ Envelope—A Component of the
Building Energy System.................................................................................1
1.1 Systematic Approach Applied to Buildings.......................................1
1.2 Envelope System (Envelope) and Energy Functions Design...........3
1.3 Summary Analysis of the Building–Surrounding Energy
Interactions........................................................................................... 11
2. Physics of Energy Conversions in the Building Envelope at
Microscopic Level.......................................................................................... 13
2.1 Idealized Physical Model of the Building Envelope as an
Energy-Exchanging Medium (Review of the Literature from
Microscopic Point of View)................................................................. 16
2.2 Conclusions and Generalizations Based on the Survey of
Literature Published in the Field.......................................................30
2.3 Design of a Hypothetical Physical Model of Phonon
Generation in Solids: Scatter of Solar Radiation within
the Solid.............................................................................................. 32
2.3.1 Internal Ionization and Polarization Running in
Solids (Formation of Temporary Electrodynamic
Dipoles)..................................................................................... 32
2.3.2 Hypothetical Mechanism of Energy Transfer in the
Building Envelope Components...........................................36
2.3.2.1 Physical Pattern of Energy Transfer within
the Envelope Components.....................................36
2.3.3 Hypothetical Model of Energy Transfer through
Solid Building Components: A Model of Lagging
Temperature Gradient............................................................ 41
2.3.3.1 Model of Lagging Temperature Gradient............48
2.4 Micro–Macroscopic Assessment of the State of the Building
Envelope................................................................................................ 51
2.4.1 Microscopic Canonical Ensemble: Collective
Macroscopic State.................................................................... 51

2.4.2 Introduced Macroscopic State Parameters of
the Building Envelope Considered as a Physical
Medium of the Electrothermodynamic System.................53
2.4.2.1 Temperature Field and Gradient of the
Lagrange Multiplier................................................53
2.4.2.2 Pressure Field...........................................................58
2.4.2.3 Field of the Electric Potential: Potential
Function and Gradient of the Electric
Potential................................................................. 61
2.4.2.4 Entropy: A Characteristic of Degeneration
of the Heat Charges (Phonons) within the
Envelope Control Volume......................................66
2.4.3 Conclusions on the General Methodological
Approaches to the Study of an
Electrothermomechanical System........................................73
3. Design of a Model of Energy Exchange Running between
the Building Envelope and the Surroundings: Free Energy
Potential........................................................................................................ 75
3.1 Energy-Exchange Models of the Building Envelope......................75
3.2 Work Done in the Building Envelope and Energy-Exchange
Models................................................................................................... 81
3.2.1 Law of Conservation of the Energy Interactions
between the Envelope Components and the Building
Surroundings...........................................................................82
3.2.2 Special Cases of Energy Interactions...................................86
3.2.2.1 Energy Model of Transfer of Entropy and
Electric Charges.......................................................86
3.2.2.2 Energy Model of Entropy Transfer with or
without Mass Transfer............................................88
3.3 Specification of the Structure of the Free Energy
in the Components of the Building Envelope
(Electrothermodynamic Potential of the System)............................89
3.3.1 Finding the Structure of the Free Energy Function...........92
3.3.1.1 Links between Entropy and the System
Basic Parameters......................................................95
3.4 Distribution of the Free Energy within the Building
Envelope........................................................................................ 97
3.4.1 State Parameters Subject to Determination via the
Free Energy Function.............................................................99
4. Definition of the Macroscopic Characteristics of Transfer................. 101
4.1 General Law of Transfer.................................................................... 106
4.2 Physical Picture of the Transmission Phenomena........................ 108
4.3 Conclusions......................................................................................... 111
5. Numerical Study of Transfer in Building Envelope
Components..........................................................................................113
5.1 Method of the Differential Relations.............................................. 113
5.2 Method of the Integral Forms.......................................................... 119
5.3 Weighted Residuals Methodology Employed to Assess the
ETS Free Energy Function................................................................122
5.3.1 Basic Stages of the Application of WRM in
Evaluating Transport within the Envelope....................... 125
5.3.1.1 One-Dimensional Simple Finite Element.......... 140
5.3.1.2 Two-Dimensional Simple Finite Element in
Cartesian Coordinates.......................................... 140
5.3.1.3 Two-Dimensional Simple Finite Element in
Cylindrical Coordinates....................................... 141
5.3.1.4 Three-Dimensional Simple Finite Element....... 141
5.3.2 Modeling of Transfer in a Finite Element Using a
Matrix Equation (Galerkin Method).................................. 142
5.3.3 Steady Transfer in One-Dimensional Finite Element...... 146
5.3.3.1 Integral Form of the Balance of Energy
Transfer through One-Dimensional Finite
Element................................................................... 147
5.3.3.2 Modified Matrix Equation of 1D Transfer......... 150
5.3.3.3 Transfer through 1D Simple Finite Element
Presented in Cylindrical Coordinates................ 155
5.3.4 Steady Transfer in a 2D Finite Element............................. 160
5.3.4.1 Equation of a 2D Simple Finite Element in
Cartesian Coordinates.......................................... 161
5.3.4.2 Design of Transfer Equation in Cylindrical
Coordinates regarding a Three-Noded 2D
Finite Element........................................................ 166
5.3.5 Transfer through a 3D Simple Finite Element.................. 170
5.3.5.1 Design of the Matrix Equation of Transfer
in Cartesian Coordinates..................................... 170
6. Initial and Boundary Conditions of a Solid Wall Element................. 175
6.1 Effects of the Environmental Air on the Building Envelope....... 175
6.1.1 Mass Transfer from the Building Envelope (Wall
Dehumidification, Drying)...................................................... 176
6.1.1.1 Processes Running at a Cold Wall (TA Twi ³ ).......177
6.1.1.2 Processes Running at a Cold Wall (Tw < TA ).......178
6.2 Various Initial and Boundary Conditions of Solid Structural
Elements.............................................................................................. 179
6.3 Design of Boundary Conditions of Solid Structural Elements.......182
6.3.1 Boundary Conditions of Convective Transfer
Directed to the Wall Internal Surface................................ 183
6.3.2 Boundary Conditions at the Wall External Surface......... 185
7. Engineering Methods of Estimating the Effect of the
Surroundings on the Building Envelope: Control of the
Heat Transfer through the Building Envelope (Arrangement
of the Thermal Resistances within a Structure Consisting of
Solid Wall Elements)................................................................................... 191
7.1 Calculation of the Thermal Resistance of Solid Structural
Elements.............................................................................................. 194
7.2 Solar Shading Devices (Shield) Calculation...................................203
7.3 Modeling of Heat Exchange between a Solar Shading
Device, a Window, and the Surroundings.....................................208
7.3.1 Mathematical Model............................................................. 212
7.4 Design of Minimal-Admissible Light-Transmitting Envelope
Apertures Using the Coefficient of Daylight (CDL)...................... 213
7.4.1 Energy and Visual Comfort................................................ 213
7.4.2 Calculation of the Coefficient of Daylight (CDL)............. 218
7.5 Method of Reducing the Tribute of the Construction and the
Thermal Bridges to the Energy Inefficiency..................................223
7.5.1 Characteristics of Heat Transfer through Solid
Inhomogeneous Multilayer Walls...................................... 224
7.5.2 Method Described Step by Step.........................................227
7.5.3 Description of the Energy Standard of the
Construction (EEConst)............................................................227
7.5.4 Employment of the Energy Standard to Assess How
the Building Structure Affects the Energy Efficiency......229
7.6 Assessment of Leaks in the Building Envelope and the
Air-Conditioning Systems................................................................233
7.6.1 Measuring Equipment of the Method “Delta-Q”............234
7.6.2 Modified Balance Equation of Leaks in Air Ducts,
Air-Conditioning Station, and Envelope...........................236
7.6.3 Delta-Q Procedure: Data Collection and
Manipulation......................................................................238
7.6.4 Normalization of the Collected Data................................. 241
7.7 Mathematical Model of the Environmental Sustainability of
Buildings............................................................................................. 244
7.7.1 General Structure of the Model.......................................... 244
7.7.2 Selection of an Ecological Standard: Table of
Correspondence.................................................................... 248
7.7.3 Comparison of Systems Rating the Ecological
Sustainability in Conformity with the General
Criteria................................................................................. 255
7.8 Conclusion...........................................................................................258
Acknowledgments........................................................................................ 262
8. Applications (Solved Tasks and Tables).................................................263
8.1 Matrix of Conductivity [K(1)].............................................................263
8.2 Matrix of Surface Properties [F(1)]....................................................264
8.3 Generalized Matrix of the Element Conductivity
[G(1)] = [K(1)] + [F(1)]...............................................................................265
8.4 Vector of a Load due to Recuperation Sources { fC(1)}....................265
8.5 Vector of a Load due to Convection to the Surrounding
Matter { fC(1)}.........................................................................................266
8.6 Vector of a Load due to a Direct Flux { fDr }
e .................................... 266
8.6.1 Design and Solution of the Matrix Equation.................... 267
References............................................................................................................ 293
Index......................................................................................................................305


دانلود با لینک مستقیم


ENERGY MODELING and COMPUTATIONS in THE BUILDING ENVELOPE, 2016

All Beta spectra with their energy deposition FINAL3

اختصاصی از هایدی All Beta spectra with their energy deposition FINAL3 دانلود با لینک مستقیم و پر سرعت .

تمامی طیف انرژی بتا مربوط به عناصر مختلف در این فایل اکسل جمع اوری شده و بصورت کاملا ساده ورودی کارت انرژی و شدت هر طیف برای کد هسته ای mcnpx در ان قرار داده شده است.

نمونه ای از بخشی از این فایل را در زیر میتوانید مشاهده کنید :


دانلود با لینک مستقیم


All Beta spectra with their energy deposition FINAL3