هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

هایدی

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

ENERGY MODELING and COMPUTATIONS in THE BUILDING ENVELOPE, 2016

اختصاصی از هایدی ENERGY MODELING and COMPUTATIONS in THE BUILDING ENVELOPE, 2016 دانلود با لینک مستقیم و پر سرعت .

ENERGY MODELING
and COMPUTATIONS
in THE BUILDING
ENVELOPE

2016

مطالب

1. Introduction: The Buildings’ Envelope—A Component of the
Building Energy System.................................................................................1
1.1 Systematic Approach Applied to Buildings.......................................1
1.2 Envelope System (Envelope) and Energy Functions Design...........3
1.3 Summary Analysis of the Building–Surrounding Energy
Interactions........................................................................................... 11
2. Physics of Energy Conversions in the Building Envelope at
Microscopic Level.......................................................................................... 13
2.1 Idealized Physical Model of the Building Envelope as an
Energy-Exchanging Medium (Review of the Literature from
Microscopic Point of View)................................................................. 16
2.2 Conclusions and Generalizations Based on the Survey of
Literature Published in the Field.......................................................30
2.3 Design of a Hypothetical Physical Model of Phonon
Generation in Solids: Scatter of Solar Radiation within
the Solid.............................................................................................. 32
2.3.1 Internal Ionization and Polarization Running in
Solids (Formation of Temporary Electrodynamic
Dipoles)..................................................................................... 32
2.3.2 Hypothetical Mechanism of Energy Transfer in the
Building Envelope Components...........................................36
2.3.2.1 Physical Pattern of Energy Transfer within
the Envelope Components.....................................36
2.3.3 Hypothetical Model of Energy Transfer through
Solid Building Components: A Model of Lagging
Temperature Gradient............................................................ 41
2.3.3.1 Model of Lagging Temperature Gradient............48
2.4 Micro–Macroscopic Assessment of the State of the Building
Envelope................................................................................................ 51
2.4.1 Microscopic Canonical Ensemble: Collective
Macroscopic State.................................................................... 51

2.4.2 Introduced Macroscopic State Parameters of
the Building Envelope Considered as a Physical
Medium of the Electrothermodynamic System.................53
2.4.2.1 Temperature Field and Gradient of the
Lagrange Multiplier................................................53
2.4.2.2 Pressure Field...........................................................58
2.4.2.3 Field of the Electric Potential: Potential
Function and Gradient of the Electric
Potential................................................................. 61
2.4.2.4 Entropy: A Characteristic of Degeneration
of the Heat Charges (Phonons) within the
Envelope Control Volume......................................66
2.4.3 Conclusions on the General Methodological
Approaches to the Study of an
Electrothermomechanical System........................................73
3. Design of a Model of Energy Exchange Running between
the Building Envelope and the Surroundings: Free Energy
Potential........................................................................................................ 75
3.1 Energy-Exchange Models of the Building Envelope......................75
3.2 Work Done in the Building Envelope and Energy-Exchange
Models................................................................................................... 81
3.2.1 Law of Conservation of the Energy Interactions
between the Envelope Components and the Building
Surroundings...........................................................................82
3.2.2 Special Cases of Energy Interactions...................................86
3.2.2.1 Energy Model of Transfer of Entropy and
Electric Charges.......................................................86
3.2.2.2 Energy Model of Entropy Transfer with or
without Mass Transfer............................................88
3.3 Specification of the Structure of the Free Energy
in the Components of the Building Envelope
(Electrothermodynamic Potential of the System)............................89
3.3.1 Finding the Structure of the Free Energy Function...........92
3.3.1.1 Links between Entropy and the System
Basic Parameters......................................................95
3.4 Distribution of the Free Energy within the Building
Envelope........................................................................................ 97
3.4.1 State Parameters Subject to Determination via the
Free Energy Function.............................................................99
4. Definition of the Macroscopic Characteristics of Transfer................. 101
4.1 General Law of Transfer.................................................................... 106
4.2 Physical Picture of the Transmission Phenomena........................ 108
4.3 Conclusions......................................................................................... 111
5. Numerical Study of Transfer in Building Envelope
Components..........................................................................................113
5.1 Method of the Differential Relations.............................................. 113
5.2 Method of the Integral Forms.......................................................... 119
5.3 Weighted Residuals Methodology Employed to Assess the
ETS Free Energy Function................................................................122
5.3.1 Basic Stages of the Application of WRM in
Evaluating Transport within the Envelope....................... 125
5.3.1.1 One-Dimensional Simple Finite Element.......... 140
5.3.1.2 Two-Dimensional Simple Finite Element in
Cartesian Coordinates.......................................... 140
5.3.1.3 Two-Dimensional Simple Finite Element in
Cylindrical Coordinates....................................... 141
5.3.1.4 Three-Dimensional Simple Finite Element....... 141
5.3.2 Modeling of Transfer in a Finite Element Using a
Matrix Equation (Galerkin Method).................................. 142
5.3.3 Steady Transfer in One-Dimensional Finite Element...... 146
5.3.3.1 Integral Form of the Balance of Energy
Transfer through One-Dimensional Finite
Element................................................................... 147
5.3.3.2 Modified Matrix Equation of 1D Transfer......... 150
5.3.3.3 Transfer through 1D Simple Finite Element
Presented in Cylindrical Coordinates................ 155
5.3.4 Steady Transfer in a 2D Finite Element............................. 160
5.3.4.1 Equation of a 2D Simple Finite Element in
Cartesian Coordinates.......................................... 161
5.3.4.2 Design of Transfer Equation in Cylindrical
Coordinates regarding a Three-Noded 2D
Finite Element........................................................ 166
5.3.5 Transfer through a 3D Simple Finite Element.................. 170
5.3.5.1 Design of the Matrix Equation of Transfer
in Cartesian Coordinates..................................... 170
6. Initial and Boundary Conditions of a Solid Wall Element................. 175
6.1 Effects of the Environmental Air on the Building Envelope....... 175
6.1.1 Mass Transfer from the Building Envelope (Wall
Dehumidification, Drying)...................................................... 176
6.1.1.1 Processes Running at a Cold Wall (TA Twi ³ ).......177
6.1.1.2 Processes Running at a Cold Wall (Tw < TA ).......178
6.2 Various Initial and Boundary Conditions of Solid Structural
Elements.............................................................................................. 179
6.3 Design of Boundary Conditions of Solid Structural Elements.......182
6.3.1 Boundary Conditions of Convective Transfer
Directed to the Wall Internal Surface................................ 183
6.3.2 Boundary Conditions at the Wall External Surface......... 185
7. Engineering Methods of Estimating the Effect of the
Surroundings on the Building Envelope: Control of the
Heat Transfer through the Building Envelope (Arrangement
of the Thermal Resistances within a Structure Consisting of
Solid Wall Elements)................................................................................... 191
7.1 Calculation of the Thermal Resistance of Solid Structural
Elements.............................................................................................. 194
7.2 Solar Shading Devices (Shield) Calculation...................................203
7.3 Modeling of Heat Exchange between a Solar Shading
Device, a Window, and the Surroundings.....................................208
7.3.1 Mathematical Model............................................................. 212
7.4 Design of Minimal-Admissible Light-Transmitting Envelope
Apertures Using the Coefficient of Daylight (CDL)...................... 213
7.4.1 Energy and Visual Comfort................................................ 213
7.4.2 Calculation of the Coefficient of Daylight (CDL)............. 218
7.5 Method of Reducing the Tribute of the Construction and the
Thermal Bridges to the Energy Inefficiency..................................223
7.5.1 Characteristics of Heat Transfer through Solid
Inhomogeneous Multilayer Walls...................................... 224
7.5.2 Method Described Step by Step.........................................227
7.5.3 Description of the Energy Standard of the
Construction (EEConst)............................................................227
7.5.4 Employment of the Energy Standard to Assess How
the Building Structure Affects the Energy Efficiency......229
7.6 Assessment of Leaks in the Building Envelope and the
Air-Conditioning Systems................................................................233
7.6.1 Measuring Equipment of the Method “Delta-Q”............234
7.6.2 Modified Balance Equation of Leaks in Air Ducts,
Air-Conditioning Station, and Envelope...........................236
7.6.3 Delta-Q Procedure: Data Collection and
Manipulation......................................................................238
7.6.4 Normalization of the Collected Data................................. 241
7.7 Mathematical Model of the Environmental Sustainability of
Buildings............................................................................................. 244
7.7.1 General Structure of the Model.......................................... 244
7.7.2 Selection of an Ecological Standard: Table of
Correspondence.................................................................... 248
7.7.3 Comparison of Systems Rating the Ecological
Sustainability in Conformity with the General
Criteria................................................................................. 255
7.8 Conclusion...........................................................................................258
Acknowledgments........................................................................................ 262
8. Applications (Solved Tasks and Tables).................................................263
8.1 Matrix of Conductivity [K(1)].............................................................263
8.2 Matrix of Surface Properties [F(1)]....................................................264
8.3 Generalized Matrix of the Element Conductivity
[G(1)] = [K(1)] + [F(1)]...............................................................................265
8.4 Vector of a Load due to Recuperation Sources { fC(1)}....................265
8.5 Vector of a Load due to Convection to the Surrounding
Matter { fC(1)}.........................................................................................266
8.6 Vector of a Load due to a Direct Flux { fDr }
e .................................... 266
8.6.1 Design and Solution of the Matrix Equation.................... 267
References............................................................................................................ 293
Index......................................................................................................................305


دانلود با لینک مستقیم


ENERGY MODELING and COMPUTATIONS in THE BUILDING ENVELOPE, 2016

Modeling resources and capabilities in enterprise architecture: A well-founded ontology-based proposal for ArchiMate

اختصاصی از هایدی Modeling resources and capabilities in enterprise architecture: A well-founded ontology-based proposal for ArchiMate دانلود با لینک مستقیم و پر سرعت .

Modeling resources and capabilities in enterprise architecture: A well-founded ontology-based proposal for ArchiMate

ژورنال:
Information Systems

سال: December 2015

قیمت اصلی: 35.95$

Abstract

The importance of capabilities and resources for portfolio management and business strategy has been recognized in the management literature. Despite that, little attention has been given to integrate the notions of capabilities and resources in enterprise architecture descriptions. One notable exception is a recent proposal to extend the ArchiMate framework and language to include capability and resources and thus improve ArchiMate׳s coverage of portfolio management. This paper presents an ontological analysis of the concepts introduced in that proposal, focusing in particular on the resource, capability and competence concepts. We provide an account for these concepts in terms of the Unified Foundational Ontology (UFO). The analysis allows us to identify semantic issues in the proposal and suggests well-founded recommendations for improvements. We revise the proposed metamodel in order to address the identified problems, thereby improving the semantic clarity and usefulness of the proposed language extension. Two real-world cases are modeled with the resulting metamodel to show the applicability of the constructs and relations in an industrial setting.

Keywords

  • Capability, Resource, Enterprise architecture modeling, Ontology-based semantics,
  • ArchiMate

دانلود با لینک مستقیم


Modeling resources and capabilities in enterprise architecture: A well-founded ontology-based proposal for ArchiMate

Modeling of the resource allocation in cloud computing centers

اختصاصی از هایدی Modeling of the resource allocation in cloud computing centers دانلود با لینک مستقیم و پر سرعت .

Modeling of the resource allocation in cloud computing centers

ژورنال:Computer Networks

سال: November 2015

قیمت اصلی:35.95$

Abstract

Cloud computing offers on-demand network access to the computing resources through virtualization. This paradigm shifts the computer resources to the cloud, which results in cost savings as the users leasing instead of owning these resources. Clouds will also provide power constrained mobile users accessibility to the computing resources. In this paper, we develop performance models of these systems. We assume that jobs arrive to the system according to a Poisson process and they may have quite general service time distributions. Each job may consist of multiple numbers of tasks with each task requiring a virtual machine (VM) for its execution. The size of a job is determined by the number of its tasks, which may be a constant or a variable. The jobs with variable sizes may generate new tasks during their service times. In the case of constant job size, we allow different classes of jobs, with each class being determined through their arrival and service rates and number of tasks in a job. In the variable case a job generates randomly new tasks during its service time. The latter requires dynamic assignment of VMs to a job, which will be needed in providing service to mobile users. We model the systems with both constant and variable size jobs using birth–death processes. In the case of constant job size, we determined joint probability distribution of the number of jobs from each class in the system, job blocking probabilities and distribution of the utilization of resources for systems with both homogeneous and heterogeneous types of VMs. We have also analyzed tradeoffs for turning idle servers off for power saving. In the case of variable job sizes, we have determined distribution of the number of jobs in the system and average service time of a job for systems with both infinite and finite amount of resources. We have presented numerical results and any approximations are verified by simulation. The results of the paper may be used in the dimensioning of cloud computing centers.

Keywords

  • Cloud computing, Queuing systems, Resource allocation, Markov process

دانلود با لینک مستقیم


Modeling of the resource allocation in cloud computing centers

Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three

اختصاصی از هایدی Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China دانلود با لینک مستقیم و پر سرعت .

Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China


Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China

Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China

Journal of Hydrology, Volume 438, p. 156-167

Z.H. Shi a,b,⇑, L. Ai b, N.F. Fang b, H.D. Zhu b.

(c) 2012 Elsevier B.V.

SummarySoil erosion poses a serious problem for sustainable agriculture and the environment. Owing to long-term anthropic pressure including overuse and inappropriate development, soil erosion has become a serious issue in the Three Gorges Area (TGA), China. Recently, integrated small watershed management (ISWM) for soil conservation in the TGA was rapidly developed. This study was conducted to investigate the impact of ISWM on soil erosion and sediment delivery in the Wangjiaqiao watershed in the TGA. The WATEM/SEDEM distributed erosion and sediment transport model was used to evaluate the effectiveness of the ISWM project. The model was calibrated against long-term measured suspended sediments at the watershed outlet. Land use and conservation measures were mapped and analyzed for 1995 and 2005, paying particular attention to quantification of changes in soil erosion and sediment delivery due to ISWM. The results showed that a combination of decreased soil loss (from 18.5 t ha-1 y-1 in 1995 to 13.2 t ha-1 y-1 in 2005) and increased sediment deposition (from 7.7 to 12.4 t ha-1 y-1) has led to a strong decrease in sediment yield (from 8.4 to 3.9 t ha-1 y-1) and the sediment delivery ratio (from 0.454 to 0.295). The results of scenario analysis showed that soil conservation measures taken in fields effectively reduce on-site soil loss and sediment yield. However, off-site sediment control measures appear to be much less effective at reducing sediment yield. This diachronic comparison of soil erosion and sediment delivery revealed that ISWM is quite effective and efficient; therefore, it is the appropriate method to combat soil erosion in the TGA and similar areas.

چکیده:

فرسایش خاک یک مشکل جدی برای کشاورزی پایدار و محیط زیست است. فشار بیش از حد انسان بر روی این منابع از جمله استفاده بیش از حد و توسعه نامناسب، سبب شده است که فرسایش خاک به یک مشکل جدی در منطقه TGAچین تبدیل شود. به تازگی، مدیریت یکپارچه حوضه‏های کوچک (ISWM) برای حفاظت خاک در TGA به سرعت توسعه یافته است. این مطالعه به منظور بررسی اثرات ISWM بر فرسایش خاک و تحویل رسوب در حوضه Wangjiaqiaoدر منطقه TGA چین انجام شد.

مدل WATEM/SEDEM توزیع فرسایش و انتقال رسوب برای ارزیابی اثربخشی پروژه ISWM بکار برده شد. مدل برای رسوبات معلق اندازه گیری شده در دراز مدت در خروجی حوضه کالیبره شد. کاربری اراضی و اقدامات حفاظتی نقشه‏برداری شد و برای سال‏های 1995 و 2005 مورد تجزیه و تحلیل قرار گرفت تا تغییرات کمی و کیفی نرخ تحویل رسوب و فرسایش خاک

 

 


دانلود با لینک مستقیم


Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: A case study in the Three Gorges Area, China

آموزش جامع و کامل زبان مدل سازی (UML( Unified Modeling Languge

اختصاصی از هایدی آموزش جامع و کامل زبان مدل سازی (UML( Unified Modeling Languge دانلود با لینک مستقیم و پر سرعت .

آموزش جامع و کامل زبان مدل سازی (UML( Unified Modeling Languge


آموزش جامع و کامل زبان مدل سازی  (UML( Unified Modeling Languge

فرمت فایل : POWER POINT (قابل ویرایش) تعداد اسلاید : 56

Uml زبانی شی گرا برای مشخص سازی، ساخت و مستند سازی یک سیستم نرم افزاری است

 Uml یک زبان مدل سازی استاندارد است نه یک فرایند استاندارد

Uml  برای ایجاد نمودارها هیچ توصیه ای ارائه نمی دهد. بلکه تجربیات و یادگیری افراد است  که تشخیص استفاده از کدام نمودارها را به استفاده کنندگان می دهد

 Uml دارای ساختار کامل ودقیقی است اما به گونه ای طراحی گردیده است تا کاربران بتوانند

      براساس نیاز های خود بخش هایی به آن اضافه کنند.


دانلود با لینک مستقیم


آموزش جامع و کامل زبان مدل سازی (UML( Unified Modeling Languge